We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Germ-Zapping Robot Deactivates SARS-CoV-2 on Surfaces in Two Minutes

By HospiMedica International staff writers
Posted on 12 Oct 2020
Print article
Image: LightStrike Germ-Zapping robot (Photo courtesy of Xenex)
Image: LightStrike Germ-Zapping robot (Photo courtesy of Xenex)
A new disinfection robot that destroys hard-to-kill viruses, bacteria and superbugs in hard-to-clean places has been proven to deactivate SARS-CoV-2, the virus that causes COVID-19, on surfaces in two minutes.

The LightStrike Germ-Zapping robot has been developed by Xenex (San Antonio, TX, USA), a provider of UV technology-based disinfection strategies and solutions.

Recognizing that superbugs are becoming increasingly resistant to cleaning chemicals, antibiotics and even some hand sanitizers, hospitals are turning to new technology to enhance their existing infection control practices in order to reduce the risk of healthcare-associated infections (HAIs) in their facilities. These infections are caused by microorganisms such as Clostridium difficile (C.diff), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE) that often lurk on high-touch surfaces in healthcare facilities.

Xenex’s LightStrike Germ-Zapping robots use pulsed xenon, an environmentally-friendly inert gas, to create intense bursts of ultraviolet (UV) light that quickly destroys bacteria, viruses, and spores on hospital surfaces without damaging expensive materials. Xenex’s pulsed, high energy, broad spectrum UV light technology is uniquely lethal to microorganisms – its 4300x more intense in peak power than a mercury lamp. Disinfection cycles are fast, allowing disinfection of a patient room in as little as 10 minutes and a surgical suite in 20 minutes or less. Sensors immediately stop the device when motion is detected and the disinfection robot also offers cloud-based reporting of key metrics. More than 40 peer-reviewed studies have been published validating the efficacy of the LightStrike technology. The findings indicate two minutes of pulsed Xenon UV decrease operating room surface contamination by 72.5%.

Related Links:
Xenex

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.