We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Wearable Sensor Patch Paired to Smartphone Detects Arrhythmia

By HospiMedica International staff writers
Posted on 05 Nov 2024
Print article
Image: The smart sensor patch is fabricated on a supporting film so that it may be peeled off and stuck onto the skin (Photo courtesy of Guren Matsumura, et al. Device)
Image: The smart sensor patch is fabricated on a supporting film so that it may be peeled off and stuck onto the skin (Photo courtesy of Guren Matsumura, et al. Device)

Wearable sensors are devices designed to be worn on the body that measure various physiological states. As part of the Internet of Things (IoT), these sensors hold significant potential for health monitoring. They produce substantial amounts of data, which must be processed for meaningful interpretation. The area of computing focused on processing this data locally on the sensor or a connected device, instead of relying on a remote cloud server, is known as edge computing. This approach is essential for the advancement of wearable sensor technology. Researchers have now employed edge computing on smartphones to analyze data from a multimodal flexible wearable sensor patch to detect arrhythmia, coughs, and falls.

A research team from Hokkaido University (Hokkaido, Japan) has created a flexible multimodal wearable sensor patch and developed edge computing software capable of identifying arrhythmia, coughs, and falls in volunteers. This innovative sensor, which utilizes a smartphone as the edge computing device, is detailed in a paper published in the journal Device. The patch is equipped with sensors that monitor cardiac activity through electrocardiogram (ECG), as well as respiration, skin temperature, and humidity due to perspiration. After confirming their long-term usability, the sensors were integrated into a flexible film that adheres to the skin. Additionally, the sensor patch contains a Bluetooth module for connection to a smartphone.

The team initially evaluated the sensor patch's ability to detect physiological changes in three volunteers who wore it on their chests. The patch was used to monitor vital signs in these individuals at wet-bulb globe temperatures (which assess heat stress risk) of 22°C and above 29°C. While the sample size was limited, the researchers were able to observe significant changes in vital signs during time-series monitoring at elevated temperatures. This could potentially aid in identifying symptoms of early-stage heat stress. To further enhance their findings, the team developed a machine learning program to analyze the recorded data for additional symptoms, including heart arrhythmia, coughing, and falls. Besides conducting the analysis on a computer, they also created an edge computing application for smartphones that achieved similar analytical results, with a prediction accuracy exceeding 80%.

“Our goal in this study was to design a multimodal sensor patch that could process and interpret data using edge computing, and detect early stages of disease during daily life,” said Professor Kuniharu Takei from Hokkaido University. “The significant advance of this study is the integration of multimodal flexible sensors, real-time machine learning data analyses, and remote vital monitoring using a smartphone. One drawback of our system is that training could not be carried out on the smartphone, and had to be done on the computer; however, this can be solved by simplifying the data processing.”

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Medical-Grade POC Terminal
POC-821
New
Phototherapy Eye Protector
EyeMax2

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.