We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans

By HospiMedica International staff writers
Posted on 04 Jul 2022
Print article
Image: Researchers have created ‘Covid computer’ to speed up diagnosis (Photo courtesy of Pexels)
Image: Researchers have created ‘Covid computer’ to speed up diagnosis (Photo courtesy of Pexels)

Currently, the diagnosis of COVID-19 is based on nucleic acid testing, or PCR tests as they are commonly known. These tests can produce false negatives and results can also be affected by hysteresis – when the physical effects of an illness lag behind their cause. Artificial intelligence (AI) offers an opportunity to rapidly screen and effectively monitor COVID-19 cases on a large scale, reducing the burden on doctors. Now, researchers have created a new AI tool that can detect COVID-19. The software analyses chest CT scans and uses deep learning algorithms to accurately diagnose the disease. With an accuracy rate of 97.86%, it is currently the most successful COVID-19 diagnostic tool in the world.

Researchers from the University of Leicester (Leicester, UK) who developed the new AI tool will now further develop this technology in the hope that the Covid computer may eventually replace the need for radiologists to diagnose COVID-19 in clinics. The software, which can even be deployed in portable devices such as smart phones, will also be adapted and expanded to detect and diagnose other diseases (such as breast cancer, Alzheimer’s Disease, and cardiovascular diseases).

"Our research focuses on the automatic diagnosis of COVID-19 based on random graph neural network. The results show that our method can find suspicious regions in the chest images automatically and make accurate predictions based on the representations," said Professor Yudong Zhang, Professor of Knowledge Discovery and Machine Learning at the University of Leicester. "The accuracy of the system means that it can be used in the clinical diagnosis of COVID-19, which may help to control the spread of the virus. We hope that, in the future, this type of technology will allow for automated computer diagnosis without the need for manual intervention, in order to create a smarter, efficient healthcare service."

Related Links:
University of Leicester 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
12-Channel ECG
CM1200B
New
Pediatric Cart
UXGLA-9PEDS
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Channels

Critical Care

view channel
Image: An in-situ curing strategy to develop a stretchable, semi-transparent, and durable GPE-TENG (Photo courtesy of Pandey et al. (2024), Chemical Engineering Journal; DOI: 10.1016/j.cej.2024.156650)

Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

Wearable technology, ranging from fitness trackers and smartwatches to medical sensors worn on the body, is revolutionizing our interaction with technology. As these devices gain in popularity, triboelectric... Read more

Surgical Techniques

view channel
Image: The first-ever surgery performed utilizing the MARS platform and Intuitive Da Vinci SP single-port robot (Photo courtesy of Levita Magnetics)

Revolutionary Robotic Surgery Combines Dual-System Technologies for Groundbreaking Prostate Procedure

In a pioneering advancement for robotic-assisted surgery, surgeons at UT Southwestern Medical Center (Dallas, TX, USA) have successfully performed the first-ever surgery utilizing two distinct systems... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.