We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI Detects Serious Neurologic Changes in NICU Infants Using Only Video Data

By HospiMedica International staff writers
Posted on 18 Nov 2024
Print article
Image: The AI-powered tool could provide real-time, critical insights into infant health that have previously been difficult to obtain (Photo courtesy of 123RF)
Image: The AI-powered tool could provide real-time, critical insights into infant health that have previously been difficult to obtain (Photo courtesy of 123RF)

Every year, more than 300,000 newborns are admitted to neonatal intensive care units (NICUs) across the United States. Infant alertness is a key indicator of neurological health, reflecting the overall function of the central nervous system. Neurological decline in NICUs can occur suddenly, with serious consequences. However, while cardiorespiratory telemetry has been widely used to monitor heart and lung function continuously in NICUs, neurotelemetry has not been implemented similarly, despite advances in electroencephalography (EEG) and specialized neuro-NICUs. Neurological assessments are still typically performed intermittently through physical exams, which can be inaccurate and may miss subtle changes. Now, a deep learning pose-recognition algorithm trained on video feeds of infants in the NICU can track their movements and accurately measure key neurological metrics.

This AI-powered tool, developed by a team of clinicians, scientists, and engineers at Mount Sinai (New York, NY, USA), offers the potential for continuous, minimally invasive monitoring of neurological health in NICUs. It could provide real-time, critical insights into infant health that have previously been difficult to obtain. The team at Mount Sinai theorized that using computer vision to track infant movements could help predict neurological changes in NICU patients. The method, called “Pose AI,” utilizes machine learning to track anatomic landmarks from video data—a technique that has already revolutionized fields like athletics and robotics. The researchers trained the AI model using over 16,938,000 seconds of video footage from 115 NICU infants at The Mount Sinai Hospital who were also undergoing continuous video EEG monitoring.

The results showed that Pose AI was able to accurately track infant landmarks and use this data to predict two key conditions—sedation and cerebral dysfunction—with high accuracy. The team was surprised by the algorithm's ability to function effectively across various lighting conditions (day, night, and during phototherapy) and from different angles. Additionally, they found that their Pose AI movement index was associated with both gestational age and postnatal age. However, the study did have limitations, as the AI models were trained using data from a single institution, meaning further evaluation is necessary with video data from other hospitals and using different camera setups. The team plans to test the technology in more NICUs and develop clinical trials to assess its impact on patient care. They are also exploring its potential for diagnosing other neurological conditions and expanding its use to adult populations, as detailed in the research published in Lancet's eClinicalMedicine.

“Our study shows that applying an AI algorithm to cameras that continuously monitor infants in the NICU is an effective way to detect neurologic changes early, potentially allowing for faster interventions and better outcomes,” said Felix Richter, MD, PhD, senior author of the paper and Instructor of Newborn Medicine in the Department of Pediatrics at Mount Sinai. “We envision a future system where cameras continuously monitor infants in the NICU, with AI providing a neuro-telemetry strip similar to heart rate or respiratory monitoring, with alert for changes in sedation levels or cerebral dysfunction. Clinicians could review videos and AI-generated insights when needed, offering an intuitive and easily interpretable tool for bedside care.”

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Platelet Concentration System
GPS III
New
Surgical Display
Vividimage D

Print article

Channels

Surgical Techniques

view channel
Image: An illustration of the endoscope lens system (Photo courtesy of Aamod Shanker/UW ECE)

New Lens System for Endoscopes Offers Physicians Unprecedented View of Inside the Body

The human body is a network of complex, interconnected passageways that traverse the cardiovascular, respiratory, and digestive systems. For physicians, reaching and treating diseased or damaged tissues... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.