We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Nanotechnology Could Combat Antibiotic-Resistant Infections in Open Bone Fractures

By HospiMedica International staff writers
Posted on 14 Nov 2024
Print article
Image: Researchers are working to possibly reduce antibiotic-resistant infections in open bone fractures by employing nanotechnology (Photo courtesy of Zane Lacko/WVU)
Image: Researchers are working to possibly reduce antibiotic-resistant infections in open bone fractures by employing nanotechnology (Photo courtesy of Zane Lacko/WVU)

Every year, over 150,000 people in the United States experience open bone fractures. Approximately 10% of these individuals develop infections, which can result in reduced limb function, additional surgeries, delayed healing, or even death. The risk of infection is further complicated by antibiotic resistance, where bacteria evolve the ability to resist the medication meant to eliminate them, allowing the infection to persist and worsen. In 2021, more than one million people globally died due to bacterial infections resistant to antibiotics, and this number is expected to double by 2050. Given the serious implications, addressing such infections is crucial. Researchers are now exploring ways to reduce the rise of antibiotic-resistant infections in open bone fractures by using nanotechnology to enhance an ancient treatment.

The work by researchers at West Virginia University (WVU, Morgantown, WV, USA) focuses on developing a hybrid of two antimicrobial materials—silver and carbon nanotubes—on the nanometer scale to combat antibiotic-resistant infections in open fractures. Silver has long been used for its antimicrobial properties, while carbon nanotubes, commonly used in drug delivery and non-invasive monitoring, also exhibit antimicrobial effects. Nanotechnology enables the use of minuscule particles that can penetrate areas larger particles cannot. These particles can easily pass through cell membranes and kill bacteria. However, challenges arise as these particles may also affect human cells, potentially causing toxicity. One of the researchers' goals is to determine the appropriate formulation and particle size to ensure safety while maximizing effectiveness.

The team plans to test the hybrid silver nanoparticle-carbon nanotube combination using human cells in laboratory settings and in rats to evaluate its ability to combat various bacteria with minimal toxicity to both human and rat cells. They also aim to bioengineer the nanohybrids as coatings for orthopedic implants to test their antimicrobial properties. The researchers hope this study will extend beyond addressing antibiotic-resistant infections in bone fractures and demonstrate that nanohybrids can be applied to a wide range of medical devices, such as bone grafts, dental implants, catheters, bandages, and needles, to prevent infections during medical procedures.

Related Links:
West Virginia University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
LED Examination Lamp
Clarity 50 LED
New
Plasma Freezer
iBF125-GX

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.