We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19

By HospiMedica International staff writers
Posted on 18 May 2022

Scientists have developed and validated an algorithm that can help healthcare professionals identify who is most at risk of dying from COVID-19 when admitted to a hospital. The tool, which uses artificial intelligence (AI), could help doctors direct critical care resources to those who need them most, and will be especially valuable to resource-limited countries.

To develop the tool, an international team led by the University of Vienna (Vienna, Austria) used biochemical data from routine blood draws performed on nearly 30,000 patients hospitalised in over 150 hospitals in Spain, the US, Honduras, Bolivia and Argentina between March 2020 and February 2022. This means they were able to capture data from people with different immune statuses - vaccinated, unvaccinated and those with natural immunity - and from people infected with every SARS-CoV-2 variant, from the virus that emerged in Wuhan, China, to the latest Omicron variant.

The resulting algorithm - called COVID-19 Disease Outcome Predictor (CODOP) - uses measurements of 12 blood molecules that are normally collected during admission. This means the predictive tool can be easily integrated into the clinical care of any hospital. CODOP was developed in a multistep process, initially using data from patients hospitalized in more than 120 hospitals in Spain, to ‘train’ the AI system to predict hallmarks of a poor prognosis. The next step was to ensure the tool worked regardless of patients’ immune status or COVID-19 variant, so they tested the algorithm in several subgroups of geographically dispersed patients. The tool still performed well at predicting the risk of in-hospital death during this fluctuating scenario of the pandemic, suggesting the measurements CODOP is based on are truly meaningful biomarkers of whether a patient with COVID-19 is likely to deteriorate.

To test whether the time of taking blood tests affects the tool’s performance, the team compared data from different time points of blood drawn before patients either recovered or died. They found that the algorithm can predict the survival or death of hospitalized patients with high accuracy until nine days before either outcome occurs. Finally, they created two different versions of the tool for use in scenarios where healthcare resources are either operating normally or are under severe pressure. Under normal operational burden, doctors may opt to use an ‘overtriage’ version, which is highly sensitive at picking up people at increased risk of death, at the expense of detecting some people who did not require critical care. The alternative ‘undertriage’ model minimizes the possibility of wrongly selecting people at lower risk of dying, providing doctors with greater certainty that they are directing care to those at the highest risk when resources are severely limited.

“The performance of CODOP in diverse and geographically dispersed patient groups and the ease of use suggest it could be a valuable tool in the clinic, especially in resource-limited countries,” said the leader of this international project and senior author David Gómez-Varela, former Max Planck Group Leader and current Senior Scientist at the Division of Pharmacology and Toxicology, University of Vienna. “We are now working on a follow-up dual model tailored to the current pandemic scenario of increasing infections and cumulative immune protection, which will predict the need for hospitalization within 24 hours for patients within primary care, and intensive care admission within 48 hours for those already hospitalized. We hope to help healthcare systems restore previous standards of routine care before the pandemic took hold.”

Related Links:
University of Vienna 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Hospital Stretcher
Millennium 5
New
Pedicle Screw Platform
CREO DLX Stabilization System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The Al-based NIHA-HF, standalone software detects heart failure using 30-second lead I ECG (Photo courtesy of Simplex Quantum)

Breakthrough AI Technology Accurately Assesses Heart Failure Severity

Heart failure (HF) is a complex condition where the heart cannot effectively pump blood to meet the body’s needs due to underlying medical issues. It is marked by recurring episodes and frequent hospitalizations.... Read more

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.