We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Portable Biosensor Platform to Reduce Hospital-Acquired Infections

By HospiMedica International staff writers
Posted on 11 Oct 2024

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections, making them a significant cause of mortality. More...

Microorganisms contracted in hospitals are frequently resistant to many common antibiotics. By 2050, the number of deaths caused by drug-resistant infections is projected to rise to 10 million worldwide, posing a serious public health challenge. Early detection of nosocomial infections and effective disinfection of hospitals and healthcare facilities are crucial to reducing these numbers, but current methods have limitations. Researchers are now developing a bio-based disinfectant to eliminate key pathogens responsible for HAIs, integrated into a new, flexible, and portable biosensor platform.

The biosensor platform being developed by a collaborative team of researchers, including from AIMPLAS - Plastics Technology Centre (Valencia, Spain;) under the NOSOSENS Project, uses printed electrochemical sensors for rapid, selective detection of Staphylococcus aureus, a methicillin-resistant bacterium responsible for 11% of nosocomial infections. The standard method currently used in hospitals to prevent these infections involves pathogen detection through cell culture microscopy, with results typically available in four to five days. The NOSOSENS portable electrochemical biosensor platform, however, offers immediate, specific detection and quantification of bacteria from the Staphylococcus aureus family. The system will also feature data monitoring, management, and alert capabilities.

A key challenge with current cleaning products is that pathogens' antimicrobial resistance renders many disinfectants less effective. Stronger disinfectants, such as peracetic acid, are often required, but they can cause long-term surface damage and are unsuitable for daily use in healthcare settings. The NOSOSENS solution, however, is both highly biocidal and bio-based, making it biodegradable, less aggressive, and more environmentally friendly. The innovations will be tested using a portable, user-friendly system for early bacterial detection by healthcare personnel, alongside an effective and sustainable pathogen elimination system for surgical tools and surfaces. By integrating with the sensor platform, this system will optimize disinfection processes, improving safety against hospital-acquired infections. It will also enable rapid tracing, control, and elimination of surface colonization, reducing risks associated with hospital stays.

Related Links:
AIMPLAS


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.