We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Portable Biosensor Platform to Reduce Hospital-Acquired Infections

By HospiMedica International staff writers
Posted on 11 Oct 2024
Print article
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections, making them a significant cause of mortality. Microorganisms contracted in hospitals are frequently resistant to many common antibiotics. By 2050, the number of deaths caused by drug-resistant infections is projected to rise to 10 million worldwide, posing a serious public health challenge. Early detection of nosocomial infections and effective disinfection of hospitals and healthcare facilities are crucial to reducing these numbers, but current methods have limitations. Researchers are now developing a bio-based disinfectant to eliminate key pathogens responsible for HAIs, integrated into a new, flexible, and portable biosensor platform.

The biosensor platform being developed by a collaborative team of researchers, including from AIMPLAS - Plastics Technology Centre (Valencia, Spain;) under the NOSOSENS Project, uses printed electrochemical sensors for rapid, selective detection of Staphylococcus aureus, a methicillin-resistant bacterium responsible for 11% of nosocomial infections. The standard method currently used in hospitals to prevent these infections involves pathogen detection through cell culture microscopy, with results typically available in four to five days. The NOSOSENS portable electrochemical biosensor platform, however, offers immediate, specific detection and quantification of bacteria from the Staphylococcus aureus family. The system will also feature data monitoring, management, and alert capabilities.

A key challenge with current cleaning products is that pathogens' antimicrobial resistance renders many disinfectants less effective. Stronger disinfectants, such as peracetic acid, are often required, but they can cause long-term surface damage and are unsuitable for daily use in healthcare settings. The NOSOSENS solution, however, is both highly biocidal and bio-based, making it biodegradable, less aggressive, and more environmentally friendly. The innovations will be tested using a portable, user-friendly system for early bacterial detection by healthcare personnel, alongside an effective and sustainable pathogen elimination system for surgical tools and surfaces. By integrating with the sensor platform, this system will optimize disinfection processes, improving safety against hospital-acquired infections. It will also enable rapid tracing, control, and elimination of surface colonization, reducing risks associated with hospital stays.

Related Links:
AIMPLAS

Gold Member
12-Channel ECG
CM1200B
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Countertop Blanket Warmer
DC400
New
Pediatric Bassinet and Trolley
BTC 401

Print article
Radcal

Channels

Critical Care

view channel
Image: The new research model for predicting hip fractures could save lives (Photo courtesy of Uppsala University)

Clinical Model Accurately Predicts Risk of Hip Fractures in Elderly

Each year, thousands of hip fractures occur, causing significant pain for patients and increasing their dependence on family, friends, or healthcare staff. Approximately 25% of those impacted die within... Read more

Surgical Techniques

view channel
Image: The precision surgery technique can prevent complications associated with extensive lymph node dissection (Photo courtesy of 123RF)

Precision Surgical Technique Enables Lymph Node Detection and Removal in Endometrial Cancer

The incidence of endometrial cancer, which is primarily known to spread through lymph nodes, has been rising significantly. Traditionally, extensive lymph node dissection is performed to confirm and remove... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The AI-powered platform improves point-of-care diagnostics with enhanced accuracy and real-time data (Photo courtesy of HueDx)

Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing

Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.