We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





AI Algorithm Detects COVID-19 in Lungs by Analyzing CT Scans With 90% Accuracy

By HospiMedica International staff writers
Posted on 01 Oct 2020
Print article
Illustration
Illustration
A new study has shown that artificial intelligence (AI) can be nearly as accurate as a physician in diagnosing COVID-19 in the lungs. The study shows that the new technique can also overcome some of the challenges of current testing.

In the study, researchers have demonstrated that the algorithm co-developed by the University of Central Florida (Orlando, FL, USA) could be trained to classify COVID-19 pneumonia in computed tomography (CT) scans with up to 90% accuracy, as well as correctly identify positive cases 84% of the time and negative cases 93% of the time.

CT scans offer a deeper insight into COVID-19 diagnosis and progression as compared to the often-used reverse transcription-polymerase chain reaction, or RT-PCR, tests. These tests have high false negative rates, delays in processing and other challenges. Another benefit to CT scans is that they can detect COVID-19 in people without symptoms, in those who have early symptoms, during the height of the disease and after symptoms resolve. However, CT is not always recommended as a diagnostic tool for COVID-19 because the disease often looks similar to influenza-associated pneumonias on the scans. The new UCF co-developed algorithm can overcome this problem by accurately identifying COVID-19 cases, as well as distinguishing them from influenza, thus serving as a great potential aid for physicians.

To perform the study, the researchers trained a computer algorithm to recognize COVID-19 in lung CT scans of 1,280 multinational patients from China, Japan and Italy. Then they tested the algorithm on CT scans of 1,337 patients with lung diseases ranging from COVID-19 to cancer and non-COVID pneumonia. When they compared the computer’s diagnoses with ones confirmed by physicians, they found that the algorithm was extremely proficient in accurately diagnosing COVID-19 pneumonia in the lungs and distinguishing it from other diseases, especially when examining CT scans in the early stages of disease progression.

“We demonstrated that a deep learning-based AI approach can serve as a standardized and objective tool to assist healthcare systems as well as patients,” said Ulas Bagci, an assistant professor in UCF’s Department of Computer Science and a co-author of the study who helped lead the research. “It can be used as a complementary test tool in very specific limited populations, and it can be used rapidly and at large scale in the unfortunate event of a recurrent outbreak.”

Related Links:
University of Central Florida

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
In-Bed Scale
IBFL500
New
Mobile Power Procedure Chair
LeMans P360

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.