We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





New, Portable Lab-on-a-Chip Identifies Concentration of COVID-19 Antibodies in Human Blood In 15 Minutes

By HospiMedica International staff writers
Posted on 01 Oct 2020
Print article
Image: New, Portable Lab-on-a-Chip Identifies Concentration of COVID-19 Antibodies in Human Blood In 15 Minutes (Photo courtesy of University of Michigan)
Image: New, Portable Lab-on-a-Chip Identifies Concentration of COVID-19 Antibodies in Human Blood In 15 Minutes (Photo courtesy of University of Michigan)
A new, portable lab-on-a-chip can identify the presence of COVID-19 antibodies in blood with greater speed and efficiency than the current standard “enzyme-linked immunosorbent assay” or ELISA technology.

Researchers from the University of Michigan (Ann Arbor, MI, USA) have developed the device and have shown that it can identify the concentration of COVID-19 antibodies in human blood in 15 minutes. That process normally takes between hours and a few days. The device, which is actually a miniature ELISA, can achieve its faster results with smaller amounts of blood. The work has particular value for the validation of convalescent plasma as a treatment for COVID-19. Microfluidic devices shrink multiple lab functions onto a single chip measured in millimeters or centimeters. In addition to needing smaller sample sizes, they also increase accuracy. This particular system can detect concentration levels of antibodies -something that can vary greatly from plasma donor to donor.

Specifically, the device detects the presence and amount of neutralizing immunoglobulin -antibodies created by the immune system within seven to 10 days of a COVID-19 infection. Only donors with high levels are likely to provide samples that could be effective in treatment, such as convalescent plasma therapy. The treatment involves taking blood from subjects that have previously been diagnosed with COVID-19, and then separating out the plasma - the liquid portion of the blood that contains antibodies. Those antibodies are then given to patients therapeutically in an attempt to boost the immune response. To bolster the data available on convalescent plasma treatments, more donors with high-titer antibody concentrations are needed. The methodology developed by the University of Michigan team provides an efficient and effective way forward.

Screening for proper donors is typically handled by standard ELISA, which requires sample processing and a refrigerator-sized plate-reader for taking measurements. Delays are exacerbated by having to send samples to a lab for analysis. The lab-on-a-chip approach analyzes on site and delivers quantitative evaluations with finger prick’s worth of blood – eight microliters. A traditional ELISA machine requires 100 microliters to do its work. The system is contained in a device the size of a portable 3D printer.

“Convalescent plasma is a treatment that can be very effective – but for it to have the best chance to work, it needs to have rigorous standards, which include assessing the presence of high-titer neutralizing antibodies,” said David Perlin, Ph.D., chief scientific officer and senior vice president of the Hackensack Meridian Center for Discovery and Innovation, and one of the new study’s authors. “This paper shows how the antibody thresholds can mean a better potential COVID-19 treatment – and also better outcomes.”

Related Links:
University of Michigan

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
In-Bed Scale
IBFL500
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.