We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App





New Insights into COVID-19 Antibody Response Could Inform Vaccine Refinement and Patient Treatment

By HospiMedica International staff writers
Posted on 30 Sep 2020
Print article
Illustration
Illustration
A tool designed to detect viral history in a drop of blood has received an upgrade, enabling it to offers new insights into COVID-19 antibody response.

VirScan, a technology that can determine which of more than 1,000 different viruses have infected a person, can now also detect evidence of infection from coronaviruses, including SARS-CoV-2. In a paper published in Science, investigators from the Brigham and Women’s Hospital (Boston, MA, USA) and Harvard Medical School (Boston, MA, USA) have offered details about the antibody response to SARS-CoV-2 and how this response may differ in individuals who go on to have a more severe case of COVID-19.

In their analysis, the investigators looked in depth at antibody responses to SARS CoV-2 by using VirScan to analyze blood samples from 232 COVID-19 patients and 190 pre-COVID-19 era controls. The team identified 800 sites of the virus that the immune system can recognize, known as epitopes. Not all epitopes are created equal; some may be recognized by neutralizing antibodies, which can elicit a response that eliminates the infection. However, if the body creates antibodies against other epitopes, it may launch a less effective response, giving the virus an advantage. In some cases, including the related coronavirus that causes SARS, viruses may even be able to benefit from the body’s antibody response, using antibodies to enter cells in a phenomenon known as antibody-dependent enhancement.

In the case of SARS-CoV-2, the team detected a range of antibody frequencies against various epitopes. Many were public epitopes - regions recognized by the immune systems of large numbers of patients. One public epitope was recognized by 79% of COVID-19 patients. Others are considered private and recognized by only a few or even one individual. Ten epitopes were in regions essential for viral entry and are likely recognized by neutralizing antibodies. The investigators used the most discriminatory epitopes to develop a rapid diagnostic test. Their findings may have important implications for vaccines. If the immune system’s response to public epitopes is not found to be protective - or even gives the virus an advantage – then vaccines will need to target other regions of the virus to give the immune system a boost.

In addition, the team found that there are several epitopes conserved across coronaviruses, and that the immune system is likely to try to reuse antibodies against them when infected with SARS-CoV-2 - a possible explanation for why so many serology tests for COVID-19 produce false positives. The investigators further analyzed where and when different antibody responses occurred, finding that patients with severe COVID-19 were more likely to launch a stronger, broader response against SARS-CoV-2, possibly because their initial immune response failed to control the infection early. Within hospitalized patients, males made more antibodies than females. The team also compared the viral histories of hospitalized and non-hospitalized COVID-19 patients and found that hospitalized patients were much more likely to have had CMV and HSV-1, two common herpes viruses. However, the researchers note that it is difficult to draw conclusions about causality given that the group of non-hospitalized patients was younger and consisted of a higher percentage of white people and women, a demographic group that generally have lower CMV infection rates. The researchers believe that their studies are a stepping stone for identifying the most effective antibodies and eliciting them.

“This may be the deepest serological analysis of any virus in terms of resolution,” said corresponding author Stephen Elledge, PhD, the Gregor Mendel Professor of Genetics at the Brigham and HMS. “We now understand much, much more about the antibodies generated in response to SARS-CoV-2 and how frequently they are made. The next question is, what do those antibodies do? We need to identify which antibodies have an inhibitory capacity or which, if any, may promote the virus and actually help it enter into immune cells.”

“Our paper illuminates the landscape of antibody responses in COVID-19 patients,” said Elledge. “Next, we need to identify the antibodies that bind these recurrently recognized epitopes to determine whether they are neutralizing antibodies or antibodies that might exacerbate patient outcomes. This could inform the production of improved diagnostics and vaccines for SARS-CoV-2.”

Related Links:
Brigham and Women’s Hospital
Harvard Medical School


Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Hysteroscopic Fluid Management System
HysteroFlow/HysteroBalance II

Print article

Channels

Critical Care

view channel
Image: The therapeutic tool can be used for children with kidney issues stemming from sepsis (Photo courtesy of 123RF)

New Device Treats Acute Kidney Injury from Sepsis

Sepsis, commonly referred to as "blood poisoning," can occur due to any infectious agent, triggering a systemic response by the body to combat the infection. This response involves the activation of circulating... Read more

Surgical Techniques

view channel
Image: The endoscopic device can 3D image the stiffness of individual biological cells and complex organisms (Photo courtesy of University of Nottingham)

World’s First Microscopic Probe to Revolutionize Early Cancer Diagnosis

In the early stages of cancer, the cells are significantly softer than normal cells, which facilitates their movement through small spaces and contributes to the rapid spread of the disease, a process... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.