We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Scientists Retraining Coronavirus-Specific T Cells to Target Cancer Cells in Novel Immune-Oncology Approach

By HospiMedica International staff writers
Posted on 16 Sep 2020
Print article
Illustration
Illustration
An international team of scientists are examining whether the immune response to SARS-CoV-2 could be repurposed as the next generation of cancer immunotherapy.

The immune system helps protect against viruses, bacteria and anything harmful, but does not protect against cancer because it fails to recognize cancer as a threat. Dr. Shashi Gujar, a scientist with the Department of Pathology at Dalhousie University (Halifax, Nova Scotia, Canada), along with partners in France, Demark, Germany, the US and India, believes that this is where viruses like COVID-19-causing coronavirus can play a key role.

When a person becomes infected with SARS-CoV-2 coronavirus, their immune system recognizes the virus and activates a particular type of immune cells called “T cells.” These T cells act in a highly precise manner and kill only virus-harbouring cells. Multiple vaccines being tested internationally have shown a similar capacity to activate these coronavirus-specific T-cells. These T cells can establish a memory response that maintains active protection against possible re-infection with the virus, which means that coronavirus-specific T cells can hunt for the virus inside the body, eliminate the areas where the virus replicates, and aid in the recovery from COVID-19.

Dr. Gujar and his team are trying to get these same T cells to go after tumors by getting the cancer cells to express the same identifying tags as the coronavirus-infected cells, and become the targets of the anti-coronavirus T cells. Dr. Gujar and his international collaborators are currently in the process of testing the coronavirus-specific tags (called as epitopes in scientific terms) that exist in different human populations. From there, they will prepare a cocktail of these tags that can be used in human clinics to cure cancers. According to Dr. Gujar, what makes this research truly unique is that due to infection or vaccination, the coronavirus-specific cells have the potential to be found in millions of individuals worldwide- making the use of this cancer immunotherapy useful for masses globally.

“We’ve figured out how to trick your coronavirus-specific T cells to think that your cancer is infected by the virus,” said Dr. Gujar. “The key is to do this without using the virus or actually causing the real infection.”

“Once we know it works, this immunotherapy will actually be a straightforward process, and may be something we’ll be able to start using on patients sooner rather than later. This is a highly novel and practical strategy to harness virus-specific T cells against various types of cancers. That’s what makes it so exciting,” added Dr. Gujar.

Related Links:
Dalhousie University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.