We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Landmark Coronavirus Study to Trial Inhaled Imperial and Oxford COVID-19 Vaccines

By HospiMedica International staff writers
Posted on 15 Sep 2020
Print article
Illustration
Illustration
A small clinical study will compare COVID-19 vaccine candidates being developed by both Imperial College London (London, UK) and the University of Oxford (Oxford, UK) by delivering the vaccines directly to the respiratory tract of human volunteers, via inhalation through the mouth.

Currently, clinical trials are being carried out to assess the safety and efficacy of multiple COVID-19 vaccines delivered by intramuscular injection. However, scientists are keen to explore the potential for vaccines to be delivered to the respiratory tract where they could induce a localized, and potentially more specialized, immune response. It is unclear how this compares to the systemic immune response induced by injected vaccines. Imperial researchers are now set to begin trials to assess the safety and effectiveness of two of the UK’s coronavirus vaccines in development, when inhaled into the lungs.

The study aims to assess the safety and efficacy of administering the vaccines as airborne droplets inhaled by volunteers, rather than an injection into muscle. The vaccines will be delivered to a small group of healthy volunteers as an aerosol, similar to how inhaled asthma medications are delivered. Volunteers will receive aerosolized vaccines through a nebulizer, which will deliver the vaccine as airborne droplets through a mouthpiece. With direct vaccine administration to the respiratory tract, based on previous studies, lower doses may be required than by intramuscular injections to induce protective responses. The hope is that directly targeting the cells lining the airways - the typical point of infection for respiratory viruses - may induce a more effective immune response against the SARS-CoV-2 virus. This could potentially accelerate the development of effective vaccines against COVID-19 by exploring additional delivery methods and targets.

A total of 30 people are expected to be recruited to the trials. For each vaccine, researchers will assess three dose levels (low, medium and high dose) with three volunteers per group (18 in total), followed by an additional six in each group at the best dose (12 total). In addition to blood and nasal sample analyses, volunteers will undergo bronchoscopy to obtain samples from deeper within the lungs and monitor the effects in the lower respiratory tract. In addition to blood being analyzed for the presence of neutralizing antibodies (Immunoglobulin G, or IgG) and T cells, which fight the virus and protect against re-infection, the team will analyze nasal samples for the presence of specialized antibodies found in the nose and throat, called IgA, which would indicate a more specialized and localized immune response to the virus.

“We have evidence that delivering influenza vaccines via a nasal spray can protect people against flu as well as help to reduce the transmission of the disease. We are keen to explore if this may also be the case for SARS-CoV-2 and whether delivering COVID-19 vaccines to the respiratory tract is safe and produces an effective immune response,” said Dr. Chris Chiu, from the Department of Infectious Disease, who will lead the project.

“We have already shown that ChAdOx1 nCoV-19 (AZD1222) is safe and induces strong immune responses after intramuscular injection,” said Professor Sarah Gilbert, from the University of Oxford. “Delivering the vaccine to the respiratory tract instead may be a good approach to inducing immune responses in the best place to enable a rapid response after exposure to airborne virus. This is a small study which will provide some important information.”

Related Links:
Imperial College London
University of Oxford


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Digital Radiographic System
OMNERA 300M

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.