We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Researchers Identify ‘Nanobodies’ That Can Block Novel Coronavirus from Entering Human Cells

By HospiMedica International staff writers
Posted on 07 Sep 2020
Print article
Image: Researchers Identify ‘Nanobodies’ That Can Block Novel Coronavirus from Entering Human Cells (Photo courtesy of Martin Hällberg)
Image: Researchers Identify ‘Nanobodies’ That Can Block Novel Coronavirus from Entering Human Cells (Photo courtesy of Martin Hällberg)
Researchers at the Karolinska Institutet (Stockholm, Sweden) have identified a small neutralizing antibody, a so-called nanobody that has the capacity to block SARS-CoV-2 from entering human cells and believe it has the potential to be developed as an antiviral treatment against COVID-19.

Nanobodies - which are fragments of antibodies that occur naturally in camelids and can be adapted for humans - offer several advantages over conventional antibodies as candidates for specific therapies. They span less than one-tenth the size of conventional antibodies and are typically easier to produce cost-effectively at scale. Critically, they can be adapted for humans with current protocols and have a proven record of inhibiting viral respiratory infections. In February, the researchers began their search for effective nanobodies by injecting an alpaca with the new coronavirus’ spike protein, which is used to enter human cells. After 60 days, blood samples from the alpaca showed a strong immune response against the spike protein. Next, the researchers cloned, enriched and analyzed nanobody sequences from the alpaca’s B cells, a type of white blood cell, to determine which nanobodies were best suited for further evaluation. They identified one, Ty1 (named after the alpaca Tyson), that efficiently neutralizes the virus by attaching itself to the part of the spike protein that binds to the receptor ACE2, which is used by SARS-CoV-2 to infect cells. This blocks the virus from slipping into the cells and thus prevents infection.

"Our results show that Ty1 can bind potently to the SARS-CoV-2 spike protein and neutralize the virus, with no detectable off-target activity,” said Ben Murrell, assistant professor in the Department of Microbiology, Tumor and Cell Biology and co-senior author of the publication. “We are now embarking on preclinical animal studies to investigate the neutralizing activity and therapeutic potential of Ty1 in vivo”

“We hope our findings can contribute to the amelioration of the COVID-19 pandemic by encouraging further examination of this nanobody as a therapeutic candidate against this viral infection,” said Gerald McInerney, corresponding author and associate professor of virology at the Department of Microbiology, Tumor and Cell Biology at Karolinska Institutet.

Related Links:
Karolinska Institutet

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Anterior Cervical Plate System
XTEND

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.