We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Researchers Using Remote Monitoring to Discover Important Digital Biomarkers for Early Identification of COVID-19

By HospiMedica International staff writers
Posted on 24 Jul 2020
Print article
Image: The Fenland COVID Study smartphone app by Huma (Photo courtesy of Huma)
Image: The Fenland COVID Study smartphone app by Huma (Photo courtesy of Huma)
Scientists have launched a project using a remote monitoring platform that will provide them with deep insights and potential to discover important digital biomarkers for early identification of COVID-19 without in-person contact between the participants and researchers.

The renowned Fenland Study research team at the Medical Research Council (MRC) Epidemiology Unit, University of Cambridge (Cambridge, UK), has teamed up with Huma (London, UK), a digital health and therapeutics company, for the project. The Fenland Study is a population-based study set in which participants were recruited at random from a population-based sampling frame to investigate the interaction between genetic and behavioral factors on diabetes, obesity, and related metabolic disorders. What makes the Fenland Study unique is the level of detail it collects about the health and lifestyle of participants, and the objective measurement techniques that have been used to quantify behaviors like physical activity. The Study has tracked 12,500 patients for up to 15 years, combining detailed genetic profiles with objective clinical measurements including blood-based biomarkers, resting metabolic rate, cardio-respiratory fitness, physical activity, energy expenditure and body composition, as well as information from questionnaires on diet, physical activity and other behaviors.

The Fenland study participants will use Huma technology to report and share health information with researchers from a smartphone, providing researchers with rich health data to understand the disease progression and early predictors of COVID-19. Understanding the early signs of COVID-19 will enable earlier identification of infection and more effective treatment and infection control. The study will measure antibodies to determine how many people have previously been infected with COVID-19 in the first wave of the pandemic and will observe the development of antibodies over the next months. It will use information collected by participants and new digital biomarkers to develop new predictive models for early identification of COVID-19 infection. The study will also allow researchers to investigate the effects of public health and policy responses such as social distancing on health-related behaviors, well-being and mental health.

The research team will use remote patient monitoring (RPM) technology from Huma to collect real-world data from participants, which can be combined with the existing Fenland dataset alongside to unlock new insights. Participants will use a novel Drawbridge One Draw device to take blood samples at home which can be sent into the laboratory for analysis of COVID 19 antibodies without the need for a direct interface with the health care system. Through Huma's smartphone app, researchers will ask participants to provide detailed health data to provide critical insights into the detection and progression of COVID-19. The new study will measure participants' COVID-19 signs and symptoms, such as heart rate, heart rate variability, respiratory rate, blood oxygen, and temperature; activity measures collected through smartphones sensors and connected devices; risk factors and health information such as body weight and diet changes; medication and supplement use; and information on mental health and wellbeing. The use of Huma's digital platform allows the research team to efficiently and safely collect information without in-person contact between participants and researchers.

“The representative recruitment strategy of the Fenland study makes it an ideal setting in which to investigate how the first wave of COVID-19 has affected the population,” said Chief Investigator Professor Nick Wareham who led the Fenland Study. “Our close contact with the participants and our strategic ambition to obtain data from participants in real time has been married with the aim of developing digital biomarkers of COVID-19 in this exciting new study. We are launching this study now as early detection of possible COVID-19 infection and efficient diagnostic testing and tracing are the cornerstone of efforts to minimize the impacts of any subsequent waves of infection.”

“The COVID-19 pandemic has made clear to the world that the traditional way of looking after patients is limited,” said Dan Vahdat, Founder and CEO of Huma. “For the first time in history, we have platforms, devices, and data collection and analysis capabilities that can change how healthcare is delivered, putting a mini hospital in your pocket. We are excited to work with the University of Cambridge to discover new digital biomarkers and health insights based on the Fenland study of 12,500 individuals and their health data for up to fifteen years. With this in-depth health data, we look forward to uncovering new insights and digital biomarkers that can aid in understanding the early indicators and disease progression of COVID-19 and far beyond.”

Related Links:
University of Cambridge
Huma


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mattress Replacement System
Carilex DualPlus
New
Hospital Bed
Alphalite

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.