We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Linear-DNA Forms of COVID-19 Vaccine Candidates Show Strong Antibody and T-Cell Responses in Preclinical Trials

By HospiMedica International staff writers
Posted on 20 Jul 2020
Print article
Illustration
Illustration
A group of linear-DNA forms of COVID-19 vaccine candidates under development has yielded strong antibody and T-cell responses even at very low doses of linear DNA in preclinical trials, raising the potential of effective dosing empowering global utility.

Linear DNA vaccines offer a broad array of advantages: stability during storage and shipment, the capacity to manufacture both centrally and locally across the globe, vaccine expression without apparent integration into the patient’s genome, the avoidance of antibiotics, no risk of transference of antibiotic-resistance genes, the avoidance of bacterial vectors, high purity and simplicity of production, and apparent high efficacy. In preclinical trials, five LineaDNA vaccine candidates being developed by Applied DNA Sciences Inc. (Stony Brook, NY, USA) in association with Takis Biotech (Rome, Italy) have demonstrated evidence of production of antibodies and T cell responses in mice.

BALB/c mice received linear DNA at day 1 and a booster vaccination on day 21. All animals demonstrated seroconversion to producing IgG against SARS-CoV-2 Spike Protein already by day 14, and significantly enhanced responses by day 38. Five different candidates of linear synthetic genomic constructs of the S gene that encode for the Spike protein were evaluated. The five constructs were designed for optimal expression in muscle and maximal immunogenicity after vaccination.

Titration studies showed that even at dilutions of 1:50,000, antisera derived from mice vaccinated with linear DNA retained its binding activity. IgGs against SARS-CoV-2 Spike could be readily identified in bronchoalveolar lavage, a wash of the lower respiratory system, suggesting that vaccination in mouse muscle would allow the consequent antibodies to fight the infection in the lower lung. T-cell responses to the linear vaccines were strongest for the linear construct that contained the sequence corresponding to an abbreviated form of the Spike protein, specifically the portion of Spike that binds to the receptor on human cells that mediates viral uptake into the host’s epithelial cells in the respiratory system. The T-cell response involved both the CD4+ and CD8+ lineages, suggesting that the response may survive long term.

In plasmid format, these same vaccine candidates were the first reported to elicit neutralizing antibodies that prevented uptake of SARS-CoV-2 when human cells in culture were challenged by the functional virus in the presence of the mouse antisera. Similar neutralization studies are scheduled to begin shortly for the antisera produced by the linear DNA constructs.

The companies believe that their collaboration on linear vaccines against the disease COVID-19 offers unique advantages in the development of vaccines, and that no single vaccine will offer a universal solution to the pandemic. Given the mutational proclivity of SARS-CoV-2, and the synthetic genomic design skills of Takis, Applied DNA could manufacture an improved LineaDNA vaccine within days of obtaining the sequence of a mutant variant that dodged the vaccines targeting the currently dominant variants.

“We are pleased to report that all five LineaDNA vaccine candidates provoked seroconversion in mice with all animals producing IgG against the SARS-CoV-2 Spike Protein by Day 14 and significantly enhanced responses by Day 38. These results are consistent with IgGs that in prior studies with plasmids were neutralizing in that they prevented the uptake of functional virus by host cells in culture,” stated Dr. James A. Hayward, president and CEO of Applied DNA. “We look forward to supporting further studies by Takis with a goal of entering human trials in early Autumn. We believe no single vaccine will provide the security we need as a global population, and that our LineaDNA vaccines will complement those already marching toward the market.”

“Our results are very encouraging, and we have good reason for optimism. We must proceed with toxicology studies and move on to large animal studies as we march toward the clinic. We are now moving to engage third parties to help take us to market on the basis of these encouraging results,” said Dr. Luigi Aurisicchio, Chief Executive and Scientific Officer of Takis Biotech.

Related Links:
Applied DNA Sciences Inc.
Takis Biotech


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Fetal and Maternal Monitor
F9 Series
New
LED Examination Lamp
Clarity 50 LED

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.