We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





New Nanoparticle Immunization Technology Could Protect Against SARS-CoV-2 and Different Coronavirus Variants

By HospiMedica International staff writers
Posted on 14 Jan 2021
Print article
Illustration
Illustration
A team of researchers working on developing vaccines for a wide range of related coronaviruses has designed a protein-based 60-subunit nanoparticle onto which pieces of up to eight different types of coronavirus have been attached.

Researchers at the California Institute of Technology (Caltech Pasadena, CA, USA) found that when injected into mice, the vaccine induces the production of antibodies that react to a variety of different coronaviruses, including similar viruses that were not presented on the nanoparticle. The vaccine platform, called a mosaic nanoparticle, is shaped like a cage made up of 60 identical proteins, each of which has a small protein tag that functions like a piece of Velcro. The researchers took fragments of the spike proteins of different coronaviruses (spike proteins play the biggest role in infection) and engineered each to have a protein tag that would bind to those on the cage—the other half of the piece of Velcro. When these viral pieces were mixed together with the nanoparticle cage structure, each virus tag stuck to a tag on the cage, resulting in a nanoparticle presenting spikes representing different coronavirus strains on its surface.

Displaying eight different coronavirus spike fragments (known as receptor-binding domains or RBDs) with this particle platform generated a diverse antibody response, which is an advantage over traditional vaccine methods that present pieces from only a single type of virus. After inoculation, the antibodies subsequently produced by mice were able to react to many different strains of coronavirus. Importantly, the antibodies were reactive to related strains of coronavirus that were not present on the nanoparticle.

This suggests that, by presenting the immune system with multiple different coronavirus variants, the immune system learns to recognize common features of coronaviruses and thus could potentially react to a newly emerging coronavirus - not just a SARS-CoV-2 variant - that might cause another pandemic. Although the team is still studying the mechanism underlying this phenomenon, the results are promising. The next step is to examine whether immunization prevents viral infection and/or infection symptoms in animals making these antibodies.

"If we can show that the immune response induced by our nanoparticle technology indeed protects against illness resulting from infection, then we hope that we could move this technology forward into human clinical trials, though there are a lot of steps that need to happen between now and then," said graduate student Alex Cohen who led the study. "We don't envision that this methodology would replace any existing vaccines, but it's good to have many tools on hand when facing future emerging viral threats."

"Unfortunately SARS-CoV-2 is unlikely to be the last coronavirus to cause a pandemic," said Pamela Björkman, the David Baltimore Professor of Biology and Bioengineering. "Alex's results show that it is possible to raise diverse neutralizing antibody responses, even against coronavirus strains that were not represented on the injected nanoparticle. So we are hopeful that this technology could be used to protect against future animal coronaviruses that cross into humans. In addition, the nanoparticles elicit neutralizing responses against SARS-CoV-2, so it could be possible to use them now to protect against COVID-19 as well as other coronaviruses with pandemic potential."

Related Links:
California Institute of Technology

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Fixed Height Patient Trolley
GT1501
New
Silver Member
Advanced 12-Lead Electrocardiograph with Printer
NECG SE-1200 Pro

Print article

Channels

Critical Care

view channel
Image: The study used a new electronic diagnostic model as an alternative to kidney biopsies to predict AIN (Photo courtesy of 123RF)

Electronic Diagnostic Model Predicts Acute Interstitial Nephritis in Patients

Acute interstitial nephritis (AIN) is a frequent cause of acute kidney injury (AKI), characterized by inflammation and swelling of certain kidney tissues. It is typically associated with the use of medications... Read more

Surgical Techniques

view channel
Image: A wireless, fully implantable LVAD system could reduce the risk of infections and complications (Photo courtesy of 123RF)

Wireless, Fully Implantable LVAD System to Make Life Easier for Heart Failure Patients

Left Ventricular Assist Devices (LVADs) have traditionally relied on physical drivelines to provide power, creating a connection through the patient's skin. These drivelines increase the risk of infections... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.