We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Tiny Mineral Particles a Better Vehicle for Delivering mRNA COVID-19 Vaccine

By HospiMedica International staff writers
Posted on 07 Jul 2020
Print article
Image: William Murphy, a UW-Madison professor of biomedical engineering and orthopedics (Photo courtesy of University of Wisconsin-Madison)
Image: William Murphy, a UW-Madison professor of biomedical engineering and orthopedics (Photo courtesy of University of Wisconsin-Madison)
Researchers have developed a safer and more efficient way to deliver a promising new method for treating cancer and liver disorders and for vaccination, including a COVID-19 vaccine being developed by Moderna Therapeutics that has advanced to clinical trials with humans.

The technology developed by researchers at the University of Wisconsin-Madison (Madison, WI, USA) relies on inserting into cells pieces of carefully designed messenger RNA (mRNA), a strip of genetic material that human cells typically transcribe from a person’s DNA in order to make useful proteins and go about their business. Problems delivering mRNA safely and intact without running afoul of the immune system have held back mRNA-based therapy, although UW-Madison researchers are making tiny balls of minerals that appear to do the trick in mice. The researchers used mineral-coated microparticles (MCMs), which are five to 10 micrometers in diameter, about the size of a human cell, in a series of experiments to deliver mRNA to cells surrounding wounds in diabetic mice. The wounds healed faster in MCM-treated mice, and cells in related experiments showed much more efficient pickup of the mRNA molecules than other delivery methods.

In a healthy cell, DNA is transcribed into mRNA, and mRNA serves as the instructions the cell’s machinery uses to make proteins. A strip of mRNA created in a lab can be substituted into the process to tell a cell to make something new. If that something is a certain kind of antigen, a molecule that alerts the immune system to the presence of a potentially harmful virus, the mRNA has done the job of a vaccine. The researchers coded mRNA with instructions directing cell ribosomes to pump out a growth factor, a protein that prompts healing processes that are otherwise slow to unfold or nonexistent in the diabetic mice (and many severely diabetic people).

The new study also paired mRNA with an immune-system-inhibiting protein, to make sure that the target cells did not pick the mRNA out as a foreign object and destroy or eject it. Successful mRNA delivery usually keeps a cell working on new instructions for about 24 hours, and the molecules they produce disperse throughout the body. However, because the MCMs are large enough that they don’t enter the bloodstream and float away, they stay right where they are needed to keep releasing helpful therapy. In the mice, that therapeutic activity kept going for more than 20 days.

“The more mRNA you deliver, the more therapeutic effect you get, but the more likely it is that you’re going to see toxic effect, too. So, it’s a trade-off,” said William Murphy, a UW-Madison professor of biomedical engineering and orthopedics. “What we found is when we deliver from the MCMs, we don’t see that toxicity. And because MCM delivery protects the mRNA from degrading, you can get more mRNA where you want it while mitigating the toxic effects.”

Related Links:
University of Wisconsin-Madison

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+
New
Medical-Grade POC Terminal
POC-821

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.