We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Interbody Fusion Device Provides Integrated Fixation

By HospiMedica International staff writers
Posted on 24 Jun 2018
Print article
Image: Multiple views of the ENZA-A Titanium ALIF system (Photo courtesy of Camber Spine).
Image: Multiple views of the ENZA-A Titanium ALIF system (Photo courtesy of Camber Spine).
A minimally invasive anterior lumbar interbody fusion (ALIF) system uses autogenous bone grafts to stabilize patients with degenerative disc disease (DDD).

The Camber Spine (Wayne, PA, USA) ENZA-A Titanium ALIF system consists of a three-dimensional (3D) printed titanium body with multiple openings to allow a large volume of autogenous bone graft to be easily packed into the implant, and roughened cranial and caudal surfaces that encourage bone growth onto the surface of the device. The surfaces are deliberately designed with pores that average 500 microns in diameter, the optimal environment for bone growth that fully incorporates the implant with the vertebral bodies.

The ENZA-A features two sharpened anchor plates housed within the 3D-printed body until they are deployed into the adjacent vertebrae for fixation. Surgery time is reduced thanks to the single, inline instrumentation used to insert the device, deploy the anchor plates, and lock it in place. Patient safety is increased by minimizing the size of the incision and retraction required for implantation. The ENZA-A has been approved by the U.S. Food and Drug Administration (FDA) for use at one or two contiguous levels from L2 to S1 using supplementary fixation systems.

“With ergonomic instrumentation, this system is easy to use and makes implantation more streamlined,” said Seth Anderson, executive VP of new business development and surgeon relations at Camber Spine. “The ENZA-A is the second device in the ENZA-line of implants; this interbody, coupled with additional product launches expected later this year in the cervical and lateral markets, will continue to grow Camber Spine's presence as a market leader and innovator in minimally invasive spine surgery technology advancements.”

Interbody devices are designed to replace the intervertebral disc of the spine, enhancing stability in the region while the spine fuses. Over time, the packed bone graft material is gradually replaced by natural bone forming a solid piece. Fusion procedures typically use a posterior fixation device to the associated level, since the surgeons will implant interbody devices from an anterior approach and flip the patient over to implant a posterior pedicle screw device. This combination increases fusion success.

Related Links:
Camber Spine

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Monitor Cart
Tryten S5
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.