We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




3D Surgical Scaffold Contours to Human Body

By HospiMedica International staff writers
Posted on 18 Apr 2017
Print article
Image: The GalaSHAPE 3D surgical scaffold comes in a range of shapes and sizes (Photo courtesy of Galatea Surgical).
Image: The GalaSHAPE 3D surgical scaffold comes in a range of shapes and sizes (Photo courtesy of Galatea Surgical).
An innovative three-dimensional (3D) scaffold for plastic and reconstructive surgery supports, elevates, repairs, and reinforces soft tissue.

The Galatea Surgical GalaSHAPE 3D Surgical Scaffold is a bioresorbable scaffold designed to assist surgeons in addressing a range of tissue deficiencies, voids or weakness that require additional materials to obtain desired surgical outcomes. This includes, among others objectives, the reinforcement of soft tissues in plastic and reconstructive surgery and general soft tissue reconstruction. The GalaSHAPE 3D scaffold is also indicated for the repair of fascial defects that require the addition of a reinforcing or bridging material.

The mesh is comprised of monofilament fibers extruded from poly-4-hydroxybutyrate (P4HB), a biologically derived polymer that resorbs in the body with very low inflammation due to its low acidity, relative to most other resorbable polymers. After implantation, the P4HB mesh remodels as functional new tissue with added thickness and strength, achieving after 18-24 months (when the scaffold is fully resorbed) a form 3-5 times stronger than native tissue.

“The ability of the GalaSHAPE 3D scaffold to conform to the variable anatomic contours encountered in aesthetic plastic surgery is a major advance compared to currently available synthetic and biologic meshes,” said plastic surgeon Bruce Van Natta, MD, of Indianapolis (IN, USA). “The combination of P4HB's strength, bioresorption, and ability to enable rapid tissue ingrowth and integration will help plastic surgeons achieve exceptional aesthetic results for their patients.”

P4HB is produced through a proprietary biologic fermentation process, rather than chemical synthesis. After it is isolated and purified, it can be extruded into monofilament fibers and used directly as suture, or knitted into an open scaffold construction that enables rapid tissue in-growth and low bacterial adherence.

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
In-Bed Scale
IBFL500
New
Documentation System For Blood Banks
HettInfo II

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.