We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Robots to Play Larger Role in Surgery Due to Recent AI Developments

By HospiMedica International staff writers
Posted on 04 Nov 2024
Print article
Image: Robots could help close surgeons’ skill gaps and improve patient outcomes (Photo courtesy of Intuitive Surgical)
Image: Robots could help close surgeons’ skill gaps and improve patient outcomes (Photo courtesy of Intuitive Surgical)

Surgeons commonly utilize robots for specific minimally invasive procedures, yet humans still dictate nearly all movements of these machines. Recent advancements in artificial intelligence (AI) and robotics have the potential to enhance the dexterity of human surgeons, as detailed in a new paper published in Science Robotics.

In the paper titled “Augmented Dexterity: How robots can enhance human surgical skills,” experts from UC Berkeley (Berkeley, CA, USA) and Intuitive Surgical (Sunnyvale, CA, USA) propose that robots may soon take on a more significant role in surgical procedures, driven by recent developments in AI. The authors suggest that the latest AI innovations could be leveraged to advance medical practices and improve public health. For instance, advancements in generative AI could allow robots to assist surgeons with tasks that require a high degree of dexterity, such as suturing. This "Augmented Dexterity" model would involve a human surgeon closely monitoring the robot's actions and stepping in when necessary.

Under the Augmented Dexterity framework, robots would superimpose digital representations of planned maneuvers onto real-time images of the surgical field. The human surgeon would then review, modify, and approve this plan before overseeing the robot as it carries it out. This method could be particularly useful for tasks like suturing and debridement, where variability in surgeon skill can lead to critical errors. Furthermore, this approach could enhance the potential for telesurgery, enabling surgeons to assist in procedures remotely. For instance, surgeons could alternate control of the robot, thereby allowing access to skilled professionals from a distance, as noted by the authors. While Augmented Dexterity has not yet been implemented in operating rooms, Intuitive Surgical is actively working towards developing these capabilities for systems like its da Vinci system.

“A surgeon’s dexterity often separates the good surgeons from the great ones,” wrote Ken Goldberg, UC Berkeley’s William S. Floyd Jr. Distinguished Chair in Engineering, and Gary Guthart, Intuitive Surgical’s chief executive officer. “Augmented Dexterity has potential to elevate good surgeons to the level of the best surgeons, which could support faster, and more reliable surgery.”

Related Links:
UC Berkeley
Intuitive Surgical

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Documentation System For Blood Banks
HettInfo II
New
Silver Member
Advanced 12-Lead Electrocardiograph with Printer
NECG SE-1200 Pro

Print article

Channels

Critical Care

view channel
Image: AI could tackle the huge problem of antimicrobial resistance in intensive care (Photo courtesy of 123RF)

AI Provides Same-Day Prediction of Bloodstream Infection and Antimicrobial Resistance in ICU Patients

Antimicrobial resistance, which refers to the ability of microorganisms to develop defenses against treatments, presents a significant challenge to global healthcare. Infections in the bloodstream can... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.