We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Soft Patch Electrode for Monitoring Human Body Signals to Help Diagnose Range of Diseases

By HospiMedica International staff writers
Posted on 10 Dec 2024
Print article
Image: Material structure of composite film electrodes and used for body\'s signal monitoring (Photo courtesy of Wearable Electronics)
Image: Material structure of composite film electrodes and used for body\'s signal monitoring (Photo courtesy of Wearable Electronics)

In the human body, signals generated by the movement of charged ions between cells, transmitted at the epidermal interface, reflect various biological activities. Detecting these signals can help us gain a deeper understanding of how the body's biological systems function. It also holds potential as a diagnostic tool for various diseases, including neurological disorders, heart disease, stroke, and cancer. However, the challenge in utilizing such signals lies in obtaining stable, high-quality readings from the skin. This requires electrodes that are highly conductive, flexible, and capable of functioning well across different environments. To address this, researchers have now developed a new flexible electrode that can accurately measure electrical signals from the human body.

Several factors can influence the accuracy of the body's signal measurements. For instance, the electrical resistance of the dermis and epidermis weakens the strength of the signals monitored at the epidermal interface. Additionally, relative motion between the electrodes and the skin surface can interfere with data collection, and changes in environmental conditions such as skin temperature, humidity, and sweat secretion can further affect signal quality. For wearable technology to effectively and continuously monitor epidermal signals, the materials used in the monitoring electrodes must have high conductivity, flexibility, and environmental stability.

A research team from Tianjin University (China) has been exploring ways to enhance ion transport to improve the accuracy of electrical signal monitoring. Their innovative approach demonstrates that better signals can be obtained by reducing the resistance of the film and enhancing ion transport performance. By combining two electronic-ionic conductors, the team developed a film electrode with high conductivity and high volumetric capacitance. This resulted in low electrochemical impedance with a film thickness of approximately 60 nm, as detailed in their research published in Wearable Electronics. The improved mixed conductivity allows for the accurate monitoring of electrophysiological signals, making it suitable for use in wearable electronic devices.

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Anterior Cervical Plate System
XTEND
New
Hospital Bed
Alphalite

Print article

Channels

Surgical Techniques

view channel
Image: The next-generation catheter is designed to improve the way atrial fibrillation is treated (Photo courtesy of 123RF)

Breakthrough Catheter Technology Offers New Hope for Atrial Fibrillation Patients

As atrial fibrillation (AF) becomes increasingly prevalent, a new next-generation catheter system designed to optimize AF ablation has successfully treated the first six patients in a first-in-human feasibility... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.