We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Generation of Wearable Sensors to Perform Biochemical Analysis of Body Fluids

By HospiMedica International staff writers
Posted on 05 Dec 2024
Print article
Image: Various sensors might be helpful at different ages (Photo courtesy of Brasier et al./Nature, 2024)
Image: Various sensors might be helpful at different ages (Photo courtesy of Brasier et al./Nature, 2024)

Wearable devices are already capable of monitoring vital body functions, such as pulse with a smartwatch or blood pressure with a smartphone app. While these sensors can provide reliable real-time data and even be used in clinical diagnostics, biochemical analyses still require bodily fluid samples like blood and urine, which are sent to labs for testing. This process can be invasive, time-consuming, and expensive. However, the next generation of wearable sensors promises to extend beyond basic vital sign tracking to include biochemical analysis. In the future, these sensors could offer valuable health insights by analyzing body fluids such as sweat, breath, saliva, tears, and urine. While many of these advancements are not yet market-ready, they are entirely feasible.

Researchers at Collegium Helveticum (Zurich, Switzerland) and ETH Zurich (Zurich, Switzerland) joined their leading counterparts in the field of wearable sensors to conduct a comprehensive review that was recently published in the journal Nature. These sensors offer significant advantages: they enable continuous health monitoring without requiring visits to medical facilities. For elderly individuals suffering from heat stress, a wearable device could remind them to stay hydrated or alert them when their electrolyte levels become critical. Additionally, such sensors are either non-invasive or minimally invasive, providing a less distressing alternative for young patients. For example, taking blood samples or inserting a catheter into infants can be difficult, leading to delays and discomfort. A wearable sensor on the infant's skin or in their diaper could perform necessary tests, such as urine analysis, with greater ease. Similarly, face masks capable of detecting viruses, like SARS-CoV-2, without invasive nasal swabs would have been especially valuable during the pandemic.

The potential applications for these devices are diverse, including innovations such as dummy sensors to detect infant dehydration, tattoos that monitor blood sugar levels, and contact lenses that gather data from the wearer’s tears. However, the challenge is clear: the devices must be practical and comfortable enough for patients to wear regularly. Additionally, the clinical benefits of the data these devices collect must be carefully considered. Not all measurable data translates into useful clinical information. For instance, C-reactive protein (CRP) is a marker of inflammation, but a high CRP reading only provides useful insight if compared to previous values, helping to assess if a patient’s condition has improved or worsened.

The development of wearable sensors also faces several technical challenges, such as how long the devices can function continuously, how they should be cleaned and stored, their energy consumption, and most importantly, the reliability of the data they collect. Validating this data is crucial, as only trustworthy readings will lead to widespread acceptance in clinical settings. Furthermore, the data from these wearables must be processed, interpreted, and presented in a user-friendly way for both patients and healthcare providers. As artificial intelligence (AI) continues to advance, it will play an increasing role in data analysis, accelerating the development of these devices. Although significant progress has been made, the researchers acknowledge that much work remains in terms of research, development, and clinical applications. Once these new devices are thoroughly tested and validated, they could gain regulatory approval, offering substantial benefits to patients and healthcare providers alike.

 

Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Surgical Booms
AIRport
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Print article

Channels

Surgical Techniques

view channel
Image: Self-aligning MagDI System magnets fused together (Photo courtesy of GT Metabolic Solutions)

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Creating a secure anastomosis that is free of complications such as bleeding or leaks is a key goal in minimally invasive bariatric, metabolic, and digestive surgery. Traditional anastomotic methods, such... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.