We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Electronic Scalp Tattoos for Measuring Brain Waves Could Replace Traditional EEG Test

By HospiMedica International staff writers
Posted on 03 Dec 2024
Print article
Image: EEG setup with e-tattoo electrodes (Photo courtesy of Nanshu Lu/UT Austin)
Image: EEG setup with e-tattoo electrodes (Photo courtesy of Nanshu Lu/UT Austin)

Electroencephalography (EEG) is a critical diagnostic tool for various neurological conditions, such as seizures, epilepsy, brain tumors, and injuries. Traditionally, the EEG procedure involves technicians marking over a dozen spots on the patient’s scalp using rulers and pencils, where they then glue electrodes to monitor brain activity. These electrodes are connected to a data collection machine by long wires. This method is not only time-consuming but also cumbersome, often causing discomfort for patients who must remain still for hours. Now, scientists have developed a groundbreaking liquid ink that can be directly printed onto the scalp, enabling doctors to measure brain activity without the need for traditional electrode setups. This new technology, described in the journal Cell Biomaterials, offers a promising alternative to current methods for monitoring brain activity and could also significantly improve brain-computer interface applications.

A team of scientists from the University of Texas (Austin, TX, USA) has been advancing a technology called electronic tattoos (e-tattoos), which are small sensors designed to track bodily signals from the skin’s surface. E-tattoos have previously been applied to measure heart activity on the chest, muscle fatigue, and even components of sweat from under the armpit. Historically, e-tattoos were printed on adhesive layers that could be transferred onto hairless areas of the body. However, a major challenge in e-tattoo technology has been designing materials that work effectively on areas with hair, such as the scalp. To overcome this, the team developed a liquid ink made from conductive polymers, which can flow through hair and form a thin-film sensor that detects brain activity once it dries.

The researchers used a computer algorithm to design the placement of EEG electrode spots on the scalp. Then, using a digitally controlled inkjet printer, they applied a thin layer of the e-tattoo ink to these spots. The process is fast, non-contact, and painless for the patient. In their experiment, the team printed e-tattoo electrodes onto the scalps of five participants with short hair, alongside conventional EEG electrodes for comparison. They found that the e-tattoos performed nearly as well as the traditional electrodes in detecting brainwaves, with minimal noise interference. After six hours, the gel in the conventional electrodes began to dry, and over a third of these electrodes failed to detect any signals. In contrast, the e-tattoo electrodes maintained stable connectivity for up to 24 hours.

Further modifications to the ink’s formula allowed the researchers to print conductive lines from the electrodes to the base of the head, replacing the wires used in standard EEG setups. This adjustment allowed the printed lines to transmit signals without picking up interference from surrounding areas. The team then connected shorter wires between the e-tattoos and a device that collected the brainwave data. Going forward, the researchers plan to incorporate wireless data transmitters directly into the e-tattoos, eliminating the need for any external wiring. This advancement could transform non-invasive brain-computer interface devices, making them more efficient and accessible. These devices currently use large, cumbersome headsets to capture brain activity for functions like controlling external devices with thoughts. By replacing external hardware with printed electronics on the scalp, e-tattoos could make brain-computer interfaces far more practical and accessible for patients.

“Our innovations in sensor design, biocompatible ink, and high-speed printing pave the way for future on-body manufacturing of electronic tattoo sensors, with broad applications both within and beyond clinical settings,” said Nanshu Lu, the paper’s co-corresponding author at the University of Texas at Austin.

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Single-Use Instrumentation
FASTPAK
New
Plasma Freezer
iBF125-GX

Print article

Channels

Surgical Techniques

view channel
Image: Self-aligning MagDI System magnets fused together (Photo courtesy of GT Metabolic Solutions)

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Creating a secure anastomosis that is free of complications such as bleeding or leaks is a key goal in minimally invasive bariatric, metabolic, and digestive surgery. Traditional anastomotic methods, such... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.