We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Handheld Device “Lights Up” Bacteria in Wounds to Help Surgeons Prevent Infection

By HospiMedica International staff writers
Posted on 28 Aug 2024
Print article
Image: A demonstration of the use of autofluorescence imaging in a wound debridement procedure (Photo courtesy of David Armstrong, DPM, PhD)
Image: A demonstration of the use of autofluorescence imaging in a wound debridement procedure (Photo courtesy of David Armstrong, DPM, PhD)

Millions of people worldwide suffer from chronic wounds—wounds that fail to heal within a few months. Such wounds almost invariably harbor bacteria, which if not adequately detected and removed, can escalate into serious infections, potentially leading to severe consequences like amputation, particularly in cases involving limbs. This risk is notably pronounced in individuals with diabetic foot ulcers, which affect one-third of those with diabetes. During the process known as debridement, physicians cleanse the wound by removing as much bacteria as possible. However, they are often hindered by the fact that not all bacteria are visible to the naked eye, leading to potential oversight of some bacteria during the cleaning process. Now, new research has introduced a potentially more effective technique for detecting bacteria during wound debridement.

This method involves autofluorescence (AF) imaging, utilizing a handheld device that employs violet light to highlight bacteria that are otherwise invisible. This technology causes the bacterial cell walls to fluoresce, displaying different colors based on the type of bacteria present, which enables immediate identification of both the presence and type of bacteria within a wound In the research, investigators at Keck Medicine of USC (Los Angeles, CA, USA) conducted a literature review of studies on the effectiveness of AF imaging in treating diabetic foot ulcers. The findings, published in Advances in Wound Care, reveal that AF imaging successfully detects bacteria in wounds in about 90% of cases that conventional clinical evaluations fail to identify.

Typically, after debridement, physicians send tissue samples to a laboratory to identify the specific bacteria types present and to determine the most effective treatment approach, including antibiotic therapy or specific wound dressings. This standard procedure can take several days, during which an infection might worsen. AF imaging, however, enables physicians to make immediate clinical decisions directly during the debridement process, without waiting for laboratory results. This timely intervention can prevent the unnecessary use of antibiotics, helping to avert prolonged antibiotic treatments and reduce the risk of developing antibiotic resistance. Physicians at Keck Medicine are already employing this technology to effectively manage patients with chronic wounds, including those suffering from diabetic foot ulcers.

“We’re hopeful this new technology can help surgeons improve their accuracy when pinpointing and consequently removing bacteria from wounds and therefore improve patient outcomes, particularly for those with diabetic foot wounds,” said David G. Armstrong, DPM, PhD, a podiatric surgeon and limb preservation specialist with Keck Medicine and senior author of the study. “The early detection and removal of bacteria from a wound is vital to preventing avoidable amputations.”

Related Links:
Keck Medicine of USC

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Vertebral Body Replacement System
Hydrolift
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.