We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Healthcare Device Powered By Body Heat Marks First Step Toward Battery-Free Wearable Electronics

By HospiMedica International staff writers
Posted on 23 Jul 2024
Print article
Image: The first healthcare device to be powered by body heat was made possible by the use of liquid-based metals (Photo courtesy of Carnegie Mellon)
Image: The first healthcare device to be powered by body heat was made possible by the use of liquid-based metals (Photo courtesy of Carnegie Mellon)

Portable, wearable electronics for physiological monitoring are gaining preference over traditional tethered devices in clinical settings due to their convenience for continuous or frequent monitoring. However, they often face challenges in power supply, requiring either large batteries or frequent recharging, which may not be practical for long-term use, particularly when devices are in hard-to-reach places or are difficult to remove or reapply. In a novel development, researchers have now demonstrated that a healthcare device can be powered entirely by body heat. By integrating a pulse oximetry sensor with a flexible, stretchable, wearable thermoelectric power generator composed of liquid metal, semiconductors, and 3D-printed rubber, the novel approach offers a viable solution to battery life issues.

The team at Carnegie Mellon University’s Department of Mechanical Engineering (Pittsburgh, PA, USA) developed a new approach to extend the battery life of wearable devices by converting body heat into electrical energy using thermoelectric generators (TEGs). This innovation includes the creation of TEGsense, a health monitoring wearable that harnesses body heat for electricity to power a photonic sensing device without the need for batteries. This system utilizes high-performance TEGs made from 3D-printed elastomers blended with liquid metal epoxy polymer composites and thermoelectric semiconductors, ensuring elastic compliance and mechanical compatibility with the body.

These thermoelectric generators were tested in both energy harvesting (Seebeck) and active heating/cooling (Peltier) modes to assess their efficiency under different physical activities such as sitting, walking, and running. During tests, when worn on the forearm and engaged in outdoor walking, the TEG arrays successfully powered electronic circuitry to collect and wirelessly transmit photoplethysmography (PPG) waveform data to an external PC via Bluetooth Low Energy (BLE). The research also included testing the voltage output of these devices on the chest and wrist of participants who were at rest and in motion. Results indicated that device performance was enhanced on the wrist and during movement, benefiting from the increased airflow cooling on one side of the device while the other side was heated by the body, thus maximizing the temperature differential required for efficient energy generation.

“This is the first step toward battery-free wearable electronics,” said Mason Zadan, a graduate student and first author of the study published in Advanced Functional Materials.

Related Links:
Carnegie Mellon University’s Department of Mechanical Engineering

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Vertebral Body Replacement System
Hydrolift
New
Phototherapy Eye Protector
EyeMax2

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.