We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

First of Its Kind Magnetoelectric Material Can Reconnect Severed Nerves

By HospiMedica International staff writers
Posted on 11 Oct 2023
Print article
Image: Magnetoelectric nonlinear metamaterials are 120 times faster at stimulating neural activity (Photo courtesy of Rice University)
Image: Magnetoelectric nonlinear metamaterials are 120 times faster at stimulating neural activity (Photo courtesy of Rice University)

For a long time, scientists have been interested in the healing capabilities of magnetoelectrics — substances that can convert magnetic fields into electric fields. These materials have the potential to gently stimulate neural tissue, offering a way to treat nerve damage or neurological conditions. But there's been a hitch: neurons often struggle to respond to the shape and frequency of the electric signals produced through this conversion. Now, a new magnetoelectric material that has been engineered to overcome this obstacle can perform magnetic-to-electric conversion 120 times faster than similar existing materials. Additionally, researchers have demonstrated its capability to accurately stimulate neurons remotely and even reconnect a severed sciatic nerve in a rat model.

Developed by neuroengineers at Rice University (Houston, TX, USA), the new magnetoelectric material offers qualities and performance that could revolutionize neurostimulation treatments. Instead of having to implant a device, small quantities of this material could simply be injected into the target area. To validate their work, the researchers conducted experiments in which they used this material to stimulate peripheral nerves in rats. They also demonstrated its potential for use in neuroprosthetics by proving it was capable of restoring function in a severed nerve.

“We can use this metamaterial to bridge the gap in a broken nerve and restore fast electric signal speeds,” said Joshua Chen, a Rice doctoral alumnus who is a lead author on the study. “Overall, we were able to rationally design a new metamaterial that overcomes many challenges in neurotechnology. And more importantly, this framework for advanced material design can be applied toward other applications like sensing and memory in electronics.”

Related Links:
Rice University 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Standing Sling
Sara Flex
New
Medical-Grade POC Terminal
POC-821

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.