We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Chest X-Ray AI System Assists in Checking Endotracheal Tube Placement

By HospiMedica International staff writers
Posted on 05 Jun 2023
Print article
Image: UCLA researchers have demonstrated using AI to checking endotracheal tube placement (Photo courtesy of Freepik)
Image: UCLA researchers have demonstrated using AI to checking endotracheal tube placement (Photo courtesy of Freepik)

Chest X-rays (CXR) serve as a vital tool in intensive care units (ICU) for monitoring patients in critical condition who are on life-support devices. Endotracheal tubes (ETTs) are particularly used to ensure airway openness and facilitate lung ventilation. After intubation, a CXR is taken to confirm the tube's placement, which needs adjustment in around 15% of patients. High-capacity ICUs can produce hundreds of CXRs daily to verify tube placement. Given the massive volume of cases and the urgent need for intervention in case of ETT misplacement, ICU physicians often preliminarily review the CXR to instantly rectify a misplaced tube, rather than wait for radiology reads. However, due to the low visibility of tubes, overlapping anatomy and medical devices, and image quality concerns, evaluating tube placement can be a challenge without high-quality monitors and refined radiology interpretation skills.

In such a situation, an artificial intelligence (AI) system can provide dual decision support: ETT detection aid and position check alert. Despite the abundant literature on AI in radiology, few systems are routinely used in clinical practice. Many systems have limited experimental testing and seldom undergo evaluation in real-world applications. Earlier, researchers from UCLA (Los Angeles, CA, USA) researchers had developed and tested an AI system that could assist in verifying ETT placement and send alerts to physicians if the tip is incorrectly positioned. In a new study, this AI system was applied to check ETT placement in clinical practice and assess its real-world performance through user feedback in order to evaluate the possibility of wider usage. The clinical evaluation demonstrated commendable performance of the chest X-ray AI system and the findings were in line with previous experimental testing.

Over a span of 17 months in clinical practice, 214 CXR images were obtained for ETT placement checking with AI assistance by ICU physicians. The system, built on the SimpleMind Cognitive AI platform and integrated into a clinical workflow, automatically recognized the ETT and verified its position relative to the trachea and carina. The AI system's generated ETT overlay and misplacement alert messages were compared with radiology reports as the benchmark. A survey was also conducted to assess the AI system's utility in clinical practice. The alert messages signifying ETT misplacement or non-detection had a positive predictive value of 42% (21/50) and a negative predictive value of 98% (161/164) based on the radiology reports. In the survey, both radiologists and ICU physicians confirmed that they concurred with the AI outputs and found them beneficial.

Thus, the user survey results revealed a broad agreement with the AI outputs and the appropriateness of the alerts among both radiologists and ICU physicians. Regarding the system's utility, user ratings suggested that while the AI does not save time, it enhances their confidence and aligns with their workflow expectations for AI. The researchers concluded that the AI system's performance in real-world clinical usage was comparable to that observed in earlier experiments. Based on this and the physicians' survey results, the system can be further deployed, utilizing insights from this evaluation to refine the algorithm and enhance the AI system's quality assurance.

Related Links:
UCLA 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Hospital Data Analytics Software
OR Companion
New
Cannulating Sphincterotome
TRUEtome

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.