We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Screen-Printed Wearable Electronics Can Be Used for Health Monitoring in Hospitals

By HospiMedica International staff writers
Posted on 13 Jan 2023
Print article
Image: A set of screen-printed electrodes (Photo courtesy of Washington State University)
Image: A set of screen-printed electrodes (Photo courtesy of Washington State University)

New research has shown that the same technology used to print rock concert t-shirts can also help to create the glittering, serpentine structures which power wearable electronics.

In a study led by Washington State University (Pullman, WA, USA), researchers demonstrated that it is possible to make electrodes using just screen printing by creating a stretchable, durable circuit pattern which can be transferred to fabric and worn directly on the human skin. These wearable electronics can be used for monitoring the health of patients admitted in hospitals or being treated at home. Currently, commercial manufacturing of wearable electronics involves expensive processes that require clean rooms. Screen printing is used by some for parts of the process, although the new method relies completely on screen printing, making it advantageous for manufacturers and consumers.

In their study, published in the ACS Applied Materials and Interfaces journal, the researchers have detailed the electrode screen-printing process and demonstrated how the produced electrodes can be used for electrocardiogram monitoring, or ECG. Using a multi-step process to layer polymer and metal inks, the researchers created snake-like structures of the electrode. The resulting thin pattern looks delicate, although the electrodes are not fragile. The study demonstrated that the electrodes can be stretched by 30% and bent to 180 degrees.

Multiple electrodes are printed onto a pre-treated glass slide, allowing them to be easily peeled off and transferred onto fabric or other material. After printing the electrodes, they were transferred onto an adhesive fabric which was worn directly on the skin by the subjects. The researchers found that the wireless electrodes accurately recorded heart and respiratory rates, and transmitted the data to a mobile phone. The main focus of the study was on ECG monitoring, although the screen-printing process can be utilized to make electrodes for different applications, including those with functions similar to those of smart watches or fitness trackers, according to the researchers. The team is currently working on expanding the technology for printing different electrodes as well as entire electronic chips and even potentially, whole circuit boards.

“We wanted to make flexible, wearable electronics in a way that is much easier, more convenient and lower cost,” said corresponding author Jong-Hoon Kim, associate professor at the WSU Vancouver’s School of Engineering and Computer Science. “That’s why we focused on screen printing: it’s easy to use. It has a simple setup, and it is suitable for mass production.”

Related Links:
Washington State University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Electric Cast Saw
CC4 System
New
Medical-Grade POC Terminal
POC-821

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.