We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Capsule-Sized Biobatteries Could Power Ingestible Cameras in Small Intestine

By HospiMedica International staff writers
Posted on 28 Dec 2022
Print article
Image: Capsule-sized ingestible biobatteries could allow new view of digestive system (Photo courtesy of Binghamton University)
Image: Capsule-sized ingestible biobatteries could allow new view of digestive system (Photo courtesy of Binghamton University)

Tech companies have developed many devices that work outside the body, such as cell phones, smart watches, tablets and hundreds of others. Inside the body, though? That’s obviously trickier for several reasons, but power for a device is a big one. Now, a team of biobattery researchers think they have a solution for the hard-to-reach small intestine, which winds around the human gut for an average of 22 feet.

The solution developed by the researchers at Binghamton University (Binghamton, NY, USA) builds on earlier findings about utilizing bacteria to create low levels of electricity that can power sensors and Wi-Fi connections as part of the Internet of Things. Other options inside the small intestine are less viable: Traditional batteries are potentially harmful, wireless power transfer from outside the body is inefficient, temperature differences aren’t enough to harness thermal energy and intestinal movement is too slow for mechanical energy. Instead, the new biobatteries utilize microbial fuel cells with spore-forming Bacillus subtilis bacteria that remain inert until they reach the small intestine.

Some people might balk at ingesting bacteria, but our bodies are filled with nontoxic microbes that help with digestion and other functions. Although the research has just been published, the team is already looking ahead to improving the capsule-sized biobatteries. Once the fuel cell reaches the small intestine, it takes up to an hour to germinate completely - faster would be better. The cell generates around 100 microwatts per square centimeter of power density - enough for wireless transmission, but 10 times more would offer many more options for use. The batteries also would require animal and human testing as well as biocompatibility studies. THE team can foresee several uses that low-level microbial fuel cells could power, including biological and chemical sensors, drug-delivery systems and electrical stimulation devices.

“There are some regions in the small intestine that are not reachable, and that is why ingestible cameras have been developed to solve this issue,” said Professor Seokheun “Sean” Choi, a faculty member in the Department of Electrical and Computer Engineering at the Thomas J. Watson College of Engineering and Applied Science, who led the research team. “They can do many things, such as imaging and physical sensing, even drug delivery. The problem is power. So far, the electronics are using primary batteries that have a finite energy budget and cannot function for the long term.”

Related Links:
Binghamton University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.