We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Ultraflexible, Gas-Permeable Thermistors to Pave Way for On-Skin Medical Sensors and Implantable Devices

By HospiMedica International staff writers
Posted on 30 Sep 2022
Print article
Image: Three dimensional measurement of the all-mesh thermistor (Photo courtesy of Shinshu University)
Image: Three dimensional measurement of the all-mesh thermistor (Photo courtesy of Shinshu University)

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has to withstand bending and stretching, and it needs to be gas-permeable to prevent irritation and discomfort. Another important safety feature of these devices is the required overheat protection circuit. This prevents the devices from overheating and burning the wearer. Any new technology developed for these sensors must meet these needs. Now, researchers have demonstrated how an important component of the sensors called a thermistor can be constructed using an ultrathin fiber-mesh, paving the way for ultraflexible and gas-permeable thermistors that can act as overheat prevention components for on-skin or implantable devices.

Thermistors are a type of resistor whose resistance significantly varies with temperature. For such thermistors to be applied for on-skin medical sensors, they must be stretchable and bendable down to several hundred micrometers. It is important for this technology to be able to wrap around a needle because sometimes sensors are attached to needles or catheters while in use. In order to achieve this, the thermistor needs to be ultrathin. Researchers at Shinshu University (Matsumoto, Japan) used a technique called electrospinning to create the ultrathin mesh-type polymer PTC thermistor. Electrospinning uses electricity to create tiny fibers. The fibers can be made out of different materials, but in this case, researchers used a solution of composite materials.

The newly designed thermistor was then tested to ensure it achieved similar performance capabilities of existing technology. Like typical film-type thermistors, the mesh-type polymer PTC thermistor showed an increase in resistance of three orders of magnitude, an important characteristic for preventing overheating and burns. By using a mesh structure, the thermistor also achieved transparency, which can help the sensors blend into the skin, and gas-permeability. Gas-permeability is necessary because it prevents irritation and discomfort. Even with this fiber layer, which serves to give the mesh structure and additional heat sensing, the thermistor remained very thin. This is important because any wearable medical device must be able to withstand bending and when the device is thinner, there is less strain.

Though this thermistor technology is promising, more research will need to be done to make this a reliable alternative to the current thermistor technology on the market. A mesh-type thermistor has a high initial resistance value due to its limited number of conductive paths. The researchers proposed that reducing the spacing between fibers in the mesh or increasing the number of electrodes used could resolve some of these problems, but additional testing will need to be done.

“An overheat protection circuit is required to avoid burning biological tissues during the operation of flexible devices. One candidate is a polymer positive temperature coefficient (PTC) thermistor, which has a large increase in resistance within a narrow temperature range,” said Chihiro Okutani, an assistant professor in the Department of Electrical and Computer Engineering at Shinshu University in Japan. “For such thermistors to be applied for on-skin medical sensors, they must be stretchable and bendable down to several hundred micrometers. However, it is still challenging to fabricate a thermistor whose temperature characteristics do not deteriorate when wrapped around a needle with a bending radius of less than 1 mm.”

“We also demonstrated the operation of the thermistor wrapped around a 280-micrometer needle by fabricating the fibers on a 1.4 micrometer ultrathin film,” added Okutani. “Our next step is practical applications of the developed thermistors. We believe that the ultraflexible and gas-permeable thermistors can act as overheat prevention components for on-skin or implantable devices, which make flexible sensors safer to operate and more reliable.”

Related Links:
Shinshu University 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Monitor Cart
Tryten S5
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.