We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Injectable Gel Can Help Patients with Brain Tumor Recover After Surgery

By HospiMedica International staff writers
Posted on 09 Aug 2022
Print article
Image: Quanyin Hu’s lab has developed an injectable gel that offers promise for tough-to-treat brain tumors (Photo courtesy of University of Wisconsin–Madison)
Image: Quanyin Hu’s lab has developed an injectable gel that offers promise for tough-to-treat brain tumors (Photo courtesy of University of Wisconsin–Madison)

Like the hardiest weed, glioblastoma almost always springs back - usually within months after a patient’s initial brain tumor is surgically removed. That is why survival rates for this cancer are just 25% at one year and plummet to 5% by the five-year mark. One of the challenges of treating this disease is that surgeons can’t always remove every bit of tumor or glioma stem cells that might linger in the brain. Now, a powerful immunity-boosting postoperative treatment could transform the odds for patients with glioblastoma.

A key characteristic of glioblastoma is the aggressive nature of the tumor cells that infiltrate the surrounding tissues. As a result of this, surgeons are unable to clearly feel the boundaries between the tumor and normal tissue. The surgeons cannot remove as much as possible because all the tissues in the brain are vital. Hence, the tumor comes back again, sharply decreasing the survival rate after treatment. Now, scientists at the University of Wisconsin–Madison (Madison, WI, USA) have developed a hydrogel that can be injected into the brain cavity left behind by the excised tumor. The hydrogel delivery method works well because it completely fills the brain cavity, slowly releases the medicine into the surrounding tissue, and promotes the cancer-killing immune response.

The hydrogel is packed with nanoparticles designed to enter and reprogram certain types of immune cells called macrophages. These immune cells normally clean up infectious invaders in the body, but in the tumor environment, they can change into a form that instead suppresses the immune system and promotes cancer growth. And because of the inflammation created by surgery, these rogue macrophages flock to the surgical site, potentially fueling cancer relapse.

The nanoparticles can engineer the macrophages to target a glycoprotein called CD133, a marker for cancer stem cells. The researchers also added an antibody, CD47, that blocks a “don’t-eat-me” signal to promote macrophages to recognize the cancer cells. The preclinical results in mice models show that the hydrogel treatment successfully generated glioma stem cell-specific chimeric antigen receptor (CAR) macrophages - essentially engineering the immune cells on site to target and kill any lingering glioma stem cells.

If effective in humans, the hydrogel treatment could eliminate the need for postsurgical chemotherapy or radiation, reducing toxic side effects while also improving patient outcomes. The next step is testing the hydrogel in larger animal models and also monitoring long-term efficacy and toxicity beyond the four- to six-month period he previously studied. While the researchers initially focused on glioblastoma, the treatment approach could also be applied to other aggressive solid tumors, including breast cancer.

“It provides hope for preventing glioblastoma relapse,” said Quanyin Hu, an assistant professor in the University of Wisconsin–Madison School of Pharmacy’s Pharmaceutical Sciences Division. “We prove that it can actually eradicate these glioma stem cells, which can eventually prevent the glioblastoma from coming back. We can significantly improve survival.”

“We have a lot of work to do before it can be potentially translated into the clinic, but we feel confident that this is a very promising approach for bringing new hope to patients with glioblastoma so they can recover after surgery,” added Hu. “We hope we can do our work to be able to advance this technology to the clinic.”

Related Links:
University of Wisconsin–Madison 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Electric Cast Saw
CC4 System
New
Plasma Freezer
iBF125-GX

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.