We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Bioelectronic Sutures Monitor Deep Surgical Wounds

By HospiMedica International staff writers
Posted on 17 Jan 2022
Print article
Image: Smart surgical sutures with an attached electronic RFID monitoring module (Photo courtesy of NUS)
Image: Smart surgical sutures with an attached electronic RFID monitoring module (Photo courtesy of NUS)
Battery-free, wireless smart sutures can promote healing and monitor wound integrity, gastric leakage, and tissue micro-motion at the same time, claims a new study.

Developed at National University of Singapore (NUS; Singapore), the new sutures have three key components: a medical-grade multifilament silk suture coated with a conductive polymer to allow it to respond to wireless signals; a battery-free electronic capacitive sensor; and an external wireless reader used to communicate with the suture. During stitching of the wound, the insulating section of the suture is threaded through the electronic module and secured by applying medical silicone to the electrical contacts.

The entire surgical stitch functions as a radio-frequency identification (RFID) tag that can be read by an external reader. The smart sutures can be read up to a depth of 50 mm, depending on the length of stitches involved, and are also able to alert clinicians if they are broken or unraveled, for example by dehiscence of the wound. Similar to existing sutures, clips, and staples, the smart sutures can be removed post-operatively via a minimally invasive procedure when risk of complications has passed. The study was published in the December 2021 issue of Nature Biomedical Engineering.

“Currently, post-operative complications are often not detected until the patient experiences systemic symptoms like pain, fever, or a high heart rate,” said senior author John Ho, PhD, of the NUS department of Electrical and Computer Engineering. “These smart sutures can be used as an early alert tool to enable doctors to intervene before the complication becomes life-threatening, which can lead to lower rates of re-operation, faster recovery, and improved patient outcomes.”

Related Links:
National University of Singapore

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Transducer Covers
Surgi Intraoperative Covers
New
Monitor Cart
Tryten S5

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.