We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Acoustic Monitor Detects Cardiac Decompensation Risk

By HospiMedica International staff writers
Posted on 10 Mar 2021
Print article
Image: The AUDICOR acoustic cardiography device (Photo courtesy of Inovise Medical)
Image: The AUDICOR acoustic cardiography device (Photo courtesy of Inovise Medical)
A new heart failure management system detects cardiac decompensation remotely in patients who have been previously hospitalized.

The Inovise Medical (Portland, OR, USA) AUDICOR is an acoustic cardiography device designed to non-invasively assess electro-mechanical activation time (EMAT). The acoustic signals are acquired via a hand-held device that connects to a smart phone and uploaded for remote analysis in the cloud. The result is a series of proprietary cardiac acoustic biomarkers that provide actionable data that physicians can use in order to modify patient therapies (such as changing drug dosages) before a significant deterioration that requires further hospitalization can occur.

The device works by simultaneously recording and algorithmically interpreting digital electrocardiogram (ECG) and acoustic data acquired by a multi-axial sound sensor. By measuring systolic time intervals and diastolic sounds, the AUDICOR can provide a reliable assessment of cardiac hemodynamics. Parameters produced include those needed to assess EMAT and systolic function, including Q wave onset to the S1 interval, the presence of a third heart sound (S3), and systolic dysfunction index (SDI), a combination of EMAT, S3, QRS duration, and QR interval.

“The most significant advantages of this new technology are enhanced ease of use, eliminated risks of surgical complications, and significantly reduced costs compared to permanently implanted physiologic sensors currently on the market,” said Peter Bauer, PhD, CEO of Inovise Medical.

“This technology promises to enhance the management of heart failure patients and keep them out of the hospital,” said Professor Michael Mirro, MD, of Indiana University (Bloomington, IN, USA). “Early detection of potential problems outside of the hospital can allow clinicians to modify the patients' therapeutic regimens and maintain their stable condition.”

The third heart sound (S3), also known as ventricular gallop, occurs after the mitral valve opens to allow passive filling of the left ventricle (LV); if the LV is not overly compliant (as is in most adults), the S3 will not be loud enough to be heard. Thus, S3 heart sound is often a sign of systolic heart failure, as it usually indicates the myocardium is overly compliant, resulting in a dilated LV. According to the company, the technology can be extended for use in other diseases, including LV hypertrophy, constrictive pericarditis, sleep apnea, and ventricular fibrillation.

Related Links:
Inovise Medical

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Medical-Grade POC Terminal
POC-821
New
In-Bed Scale
IBFL500

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.