We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Wearable Biomedical Device Helps Combat Diabetes

By HospiMedica International staff writers
Posted on 05 Apr 2016
Print article
Image: The GP-hybrid electrochemical device array (Photo courtesy of IBS Center for Nanoparticle Research).
Image: The GP-hybrid electrochemical device array (Photo courtesy of IBS Center for Nanoparticle Research).
An innovative graphene-based patch is capable of noninvasive blood sugar monitoring and feedback therapy by analyzing human sweat.

Developed by researchers at the Institute for Basic Science (IBS; Daejeon, Republic of Korea) the patch integrates electrochemically-active and soft functional materials on a gold-doped graphene and serpentine-shape gold mesh hybrid patch. The enzyme-based glucose sensor also enables systematic corrections of sweat glucose measurements as affected by pH and temperature, while a humidity sensor monitors the increase in relative humidity (RH). About 15 minutes are needed for the sweat-uptake layer of the patch to reach a RH over 80%, at which time glucose and pH measurements are initiated.

If abnormally high levels of glucose are detected, drugs can be released into the bloodstream via loaded microneedles. In an experiment to test the patch on diabetic mice, microneedles pierced the skin of the mouse near the abdomen, releasing Metformin into the bloodstream. The mice treated with microneedles showed a significant suppression of blood glucose concentrations with respect to control groups. The malleable, semi-transparent, skin-like appearance of the GP device also provides comfortable contact with human skin. The study was published on March 22, 2016, in Nature Nanotechnology.

“Our wearable GP-based device is capable of not only sweat-based glucose and pH monitoring, but also controlled transcutaneous drug delivery through temperature-responsive microneedles,” said lead author Kim Dae-Hyeong, PhD, of the IBS Center for Nanoparticle Research. “One can easily replace the used microneedles with new ones. Treatment with Metformin through the skin is more efficient than that through the digestive system because the drug is directly introduced into metabolic circulation.”

Type II diabetes affects some three million Koreans, with the figure increasing due to dietary patterns and an aging society. The current treatments available to diabetics are painful, inconvenient and costly, and regular visits to a doctor and home testing kits are needed to record glucose levels. Patients also have to inject uncomfortable insulin shots to regulate glucose levels. According to IBS, the device could facilitate the process and reduce lengthy and expensive cycles of visiting doctors and pharmacies.

Related Links:

Institute for Basic Science


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Medical-Grade POC Terminal
POC-821
New
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.