We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Non-Invasive Blood Test Uses Cell-Free DNA to Tracks Organ Injury from COVID-19

By HospiMedica International staff writers
Posted on 09 Feb 2021
Print article
Illustration
Illustration
A new non-invasive blood test uses cell-free DNA to gauge the damage that COVID-19 inflicts on cells, tissues and organs.

The blood test developed by a collaboration led by Cornell University (Ithaca, NY, USA) could help aid in the development of new therapies. For several years, the research team has been exploring the biomedical applications of cell-free DNA - dead fragments of DNA that drift around the bloodstream and urine. The fragments are relatively easy to collect via the body’s plasma. By profiling the DNA molecules and logging the occurrence of methylation marks - a chemical modification that results from the expression of different genes - the researchers can follow the fragments, much like trail of breadcrumbs, back to the source of injury or infection.

In 2019, they developed a test that used the technique to identify the presence of urinary tract infections in kidney transplant patients while also quantifying the degree of damage to the kidney and bladder. As the COVID-19 pandemic emerged, the researchers realized their test could help search out and quantify the impact of COVID-19 on patients’ lungs and other organs and tissues. The researchers then profiled 104 plasma samples from 33 COVID-19 patients, then compared the results with patients who had other viral infections, as well as healthy controls. As expected, they found evidence of injury to the lungs, as well as the liver. More surprisingly, they noted an increase in DNA from red blood cell progenitors and found that a high concentration of cell-free DNA in the blood was itself a strong prognostic marker for severe COVID-19 cases.

“A lot of what we’ve learned about the involvement of the virus with different organs is from invasive biopsies, postmortem biopsies,” said corresponding author Iwijn De Vlaminck, an assistant professor in the Meinig School of Biomedical Engineering. “But a liquid biopsy is potentially very useful as a biological measurement, a way to study what is going on in patients who have different types of symptoms, for example.

“It could be used to assess disease severity and help stratify patients in the care system,” De Vlaminck added. “It could also potentially be a surrogate biomarker that you could include in randomized controlled trials of various anti-COVID therapies and anti-virals.”

Related Links:
Cornell University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.