We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Researchers Use Physics Technology to Develop Rapid Antigen COVID-19 Test

By HospiMedica International staff writers
Posted on 10 Nov 2020
Print article
Image: Researchers Use Physics Technology to Develop Rapid Antigen COVID-19 Test (Photo courtesy of MIT)
Image: Researchers Use Physics Technology to Develop Rapid Antigen COVID-19 Test (Photo courtesy of MIT)
Researchers have adapted technology that is typically used for physics applications to create a rapid antigen COVID test that has been able to detect viral proteins in minutes with high accuracy.

Currently, PCR-, antigen-, and antibody-based technologies have been at the forefront in the development of COVID testing. However, scientists are looking into other technologies not usually used in the life sciences in order to improve the detection of the virus. Researchers from the Department of Materials Science and Engineering at the Massachusetts Institute of Technology (Cambridge, MA, USA) have developed a test called TriboSense One that does not have an optical readout for detecting viruses like many current tests on the market, but instead provides a mechanical readout to assess the strength of biomolecular interactions, looking at friction to detect a sample's molecular interactions and confirm the presence of the virus in very small concentrations.

The instrument measures how molecules in saliva affect the motion of sensing beads with magnetic properties to determine whether SARS-CoV-2 viruses are present or not. The beads and the saliva are mixed together during sample prep. Currently, the test detects the spike protein of the virus, but the magnetic sensing particles can also be customized to stick to different types of proteins, for example the nucleocapsid protein of SARS-CoV-2, which the researchers are also pursuing. Once the saliva sample is collected, the consumer's job is quite simple, consisting mostly of pipetting the sample into the solution. The technology was originally created to measure protein-protein, protein-DNA, DNA-DNA and other biomolecular interactions. Eventually, the team wants to expand testing to other diseases, but the focus now is on COVID-19. The testing system could potentially benefit point-of-care settings because of its small size and portability. The test is also inexpensive; while it costs around USD 5-6 right now, at scale it could even cost as little as USD 3.

"We had to go from scratch," said MIT Professor Alfredo Alexander-Katz. "We had never worked on viruses … and we adapted the technology to be able to do this."

Related Links:
Massachusetts Institute of Technology

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Electric Cast Saw
CC4 System

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.