We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Rapid and Automated System Analyzes Kidney Stones

By HospiMedica International staff writers
Posted on 12 Oct 2015
Print article
Image: A kidney stone being analyzed automatically using Raman spectrosopy (Photo courtesy of Fraunhofer IPM).
Image: A kidney stone being analyzed automatically using Raman spectrosopy (Photo courtesy of Fraunhofer IPM).
A new imaging system for rapid analysis of urinary stones immediately after the surgical procedure can help determine appropriate postoperative care.

Researchers at the Fraunhofer Institute for Physical Measurement Techniques (IPM; Freiburg, Germany) in collaboration with an industrial partner and University Medical Center Freiburg (Germany) are developing a novel Raman spectroscopy diagnostic system for rapid and automated analysis of kidney stones. The system identifies the light spectrum of the examined sample by illuminating it with a laser, identifying the singular characteristic wave spectrum via the 1% of photons reflected back.

The researchers then use computer software to filter out the fluorescent background occurring during Raman spectroscopy. The results are then compared to a spectral database that contains data on the nine pure substances that make up 99% of urinary stones, as determined by examining nearly 160 samples; the results were confirmed by conventional infrared (IR) based analysis in a reference laboratory. Since the device employs relatively inexpensive optical components, and it can work on wet, unprepared samples, the time taken to prepare specimens is substantially reduced.

“The stones previously had to be dried and pulverized prior to analysis. Our system makes this unnecessary. Stone fragments collected during the surgical procedure do not need to be further processed. They can in principle be put directly into the Raman spectrometer for analysis,” explained IPM physician and researcher Arkadiusz Miernik, MD. “Currently there are a few specialized laboratories that can carry out this procedure using large-scale analytical equipment. A compact device suitable for use in a clinical setting and allowing immediate, post interventional automated analysis is not yet available.”

“We advise stone patients to drink plenty of fluids, increase physical activities and lose weight if necessary. Unfortunately this is only a general recommendation,” added Dr. Miernik. “Once the complete system is ready for clinical use, the physician will be able to examine stone samples directly after surgical intervention on his own, thus increasing the quality of patients’ care substantially.”

Kidney stones are often no larger than a grain of rice, yet some can grow to a diameter of several centimeters, causing blockage of the ureters. If it cannot be dissolved chemically, the kidney stone is treated using extracorporeal shock-wave therapy or minimally invasive endoscopic modalities. Many of these patients suffer from disease recurrence and need retreatment, but new stone formation might be reduced by 50% if individualized follow-up care and proper measures are offered to the patient regarding dietary habits or the use of particular medication strategies, based on stone composition.

Related Links:

Fraunhofer Institute for Physical Measurement Techniques 
University Medical Center Freiburg


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Transcatheter Heart Valve
SAPIEN 3 Ultra

Print article

Channels

Critical Care

view channel
Image: The BrioVAD System featuring the innovative BrioVAD Pump (Photo courtesy of BrioHealth Solutions)

Innovative Ventricular Assist Device Provides Long-Term Support for Advanced Heart Failure Patients

Advanced heart failure represents the final stages of heart failure, where the heart’s ability to pump blood effectively is severely compromised. This condition often results from underlying health issues... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.