We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI Tool Merges Patient Data with Blood Test Results to Detect Heart Failure

By HospiMedica International staff writers
Posted on 20 Jun 2022
Print article
Image: AI can be better at spotting heart failure than current tests (Photo courtesy of Pexels)
Image: AI can be better at spotting heart failure than current tests (Photo courtesy of Pexels)

Acute heart failure is a life-threatening condition caused when the heart is suddenly unable to pump blood around the body. It affects millions of people and accounts for a large percentage of all unplanned hospital admissions. Diagnosis is difficult because symptoms, such as shortness of breath and leg swelling, occur in many other illnesses. Previous research has shown that patients who are diagnosed quickly benefit the most from treatment. Now, research suggests that using artificial intelligence (AI) can help diagnose acute heart failure with more accuracy than current blood tests alone.

The research conducted by The University of Edinburgh (Edinburgh, UK) found that using AI to combine patient data with results from a test for levels of a protein made by the heart could help doctors spot heart failure sooner and improve patient care. Researchers combined data from 10,369 patients with suspected acute heart failure to develop a tool - called CoDE-HF – to inform clinicians’ decisions. CoDE-HF uses AI to combine routinely collected patient information with results from a blood test for the heart protein NT-proBNP to produce an estimate of whether they suffered heart failure. The current recommended diagnosis method is to test to see if levels of NT-proBNP are below a certain cut-off value, but this is not widely used as levels can vary depending on an individual’s age, weight and other health conditions.

As well as spotting acute heart failure more accurately than heart protein blood tests on their own, CoDE-HF was especially precise in difficult to diagnose patient groups - such as older people and those with pre-existing medical conditions. The team is currently conducting further studies to understand how this decision-support tool will work in the hospital environment and influence patient outcomes.

“Heart failure can be a very challenging diagnosis to make in practice. We have shown that CoDE-HF, our decision-support tool, can substantially improve the accuracy of diagnosing heart failure compared to current blood tests,” said Dr. Ken Lee, cardiology specialist registrar and clinical lecturer at the University of Edinburgh.

“Our study demonstrates that the application of artificial intelligence in healthcare has major potential to help doctors deliver more personalized patient care,” added Dimitrios Doudesis, research fellow and data scientist at the University of Edinburgh.

“The application of artificial intelligence in decision-support tools as CoDE-HF to deliver more personalized care is particularly important given our ageing patient population who are living longer with more pre-existing medical conditions. We are currently conducting further studies to identify ways to implement CoDE-HF effectively in routine care,” stated Professor Nicholas Mills, British Heart Foundation professor of cardiology at the University of Edinburgh and consultant cardiologist.

Related Links:
The University of Edinburgh 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Oxygen Concentrator
ZH-A51
New
Transparietal Needle
PIA

Print article

Channels

Surgical Techniques

view channel
Image: A wireless, fully implantable LVAD system could reduce the risk of infections and complications (Photo courtesy of 123RF)

Wireless, Fully Implantable LVAD System to Make Life Easier for Heart Failure Patients

Left Ventricular Assist Devices (LVADs) have traditionally relied on physical drivelines to provide power, creating a connection through the patient's skin. These drivelines increase the risk of infections... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.