We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Automated AI Reads Electronic Health Records

By HospiMedica International staff writers
Posted on 22 Sep 2021
Print article
Phe2vec identified dementia cases (purple dots) from a two million patient database (blue dots) (Photo courtesy of MSSM)
Phe2vec identified dementia cases (purple dots) from a two million patient database (blue dots) (Photo courtesy of MSSM)
A new study shows how an artificial intelligence (AI)-based algorithm can read electronic health record (EHR) data to identify certain diseases.

The Phe2vec algorithm, developed by researchers at the Icahn School of Medicine at Mount Sinai (MSSM; New York, NY, USA) and the University of Potsdam (Germany), uses unsupervised machine learning (ML) to derive conceptual relationships between EHR data and a host of known diseases. The algorithm relies on embedding previous algorithms, developed by other researchers (such as linguists), to study word networks in various languages.

To test its performance, Phe2vec attempted to identify the diagnoses of nearly two million patients whose data was stored in the MSSM EHR. Results showed that for nine out of ten diseases tested, the system was as effective as, or even slightly better than, the gold standard manual phenotyping process, correctly identifying diagnoses of dementia, multiple sclerosis, and sickle cell anemia, among others. The study was published on September 2, 2021, in Patterns.

“There continues to be an explosion in the amount and types of data electronically stored in a patient’s medical record. Disentangling this complex web of data can be highly burdensome,” said senior author Benjamin Glicksberg, PhD, of the MSSM Hasso Plattner Institute for Digital Health (HPIMS). “Phe2vec aims to contribute to the next generation of clinical systems that use machine learning to offer a more holistic way to examine disease complexity and to improve clinical practice and medical research.”

Currently, scientists rely on a system called the Phenotype Knowledgebase (PheKB) to mine medical records for new information. To study a disease, researchers first have to comb through reams of medical records looking for pieces of data, such as certain lab tests or prescriptions, which are uniquely associated with the disease. They then program an algorithm to search for patients who have those disease-specific pieces of data (the phenotype). Each time researchers want to study a new disease, they have to restart this process from scratch.

Related Links:

Icahn School of Medicine at Mount Sinai
University of Potsdam

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Transcatheter Heart Valve
SAPIEN 3 Ultra
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table

Print article

Channels

Critical Care

view channel
Image: Researchers have designed a magnetoplasmonic strain sensor for wearable devices (Photo courtesy of Chemical Engineering Journal, DOI: https://doi.org/10.1016/j.cej.2024.155297)

Power-Free Color-Changing Strain Sensor Enables Applications in Health Monitoring

Wearable devices and smart sensors are revolutionizing health and activity monitoring, enabling functions like heart rate tracking and body movement detection. However, conventional tools like stethoscopes... Read more

Surgical Techniques

view channel
Image: Self-aligning MagDI System magnets fused together (Photo courtesy of GT Metabolic Solutions)

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Creating a secure anastomosis that is free of complications such as bleeding or leaks is a key goal in minimally invasive bariatric, metabolic, and digestive surgery. Traditional anastomotic methods, such... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.