We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Miniature Robots Transport Instruments for Endoscopic Microsurgery Through Body

By HospiMedica International staff writers
Posted on 03 Oct 2024
Print article
Image: Researchers conducted an electric surgical procedure on a bile duct obstruction experimentally with a robotic convoy (Photo courtesy of DKFZ)
Image: Researchers conducted an electric surgical procedure on a bile duct obstruction experimentally with a robotic convoy (Photo courtesy of DKFZ)

The potential applications for miniature robots in medicine are vast, ranging from targeted drug delivery to diagnostic tasks and performing surgical procedures. Researchers have already developed and tested a variety of robots across different scales, from nanometers to centimeters, to tackle these tasks. However, existing miniature robots often face limitations. In microsurgeries, for instance, millimeter-scale robots sometimes lack the strength to transport instruments to their destination inside the body. Additionally, many of these robots move by crawling, but they struggle to navigate the mucus-covered surfaces of various body structures, where they frequently slip. Now, scientists have addressed these challenges by combining several millimeter-sized robots, known as TrainBots, into a single unit equipped with enhanced "feet." For the first time, a robotic convoy was used to perform an electric surgical procedure on an obstructed bile duct in an experimental setting.

Developed by scientists at the German Cancer Research Center (DKFZ, Heidelberg, Germany), the TrainBot unit connects multiple individual millimeter-scale robots, each outfitted with improved anti-slip feet. Working together, these units are able to transport endoscopic instruments. The TrainBot system is wireless, controlled by an external rotating magnetic field that synchronizes the movement of the individual units, allowing precise movement in a plane. The control system is designed to operate over distances appropriate for the human body.

In their study, the researchers simulated a surgical procedure using three TrainBot units. One scenario involved bile duct cancer, where a blocked bile duct can cause bile to back up, posing a serious health risk. In these cases, the blockage must be cleared following an endoscopic diagnosis. Typically, a flexible endoscope is inserted through the mouth, passed into the small intestine, and then guided into the bile duct—a maneuver complicated by the sharp angle between the small intestine and bile duct.

To demonstrate the capabilities of their robot convoy, the researchers used organs extracted from a pig. They successfully navigated the robotic system to maneuver an endoscopic instrument to perform electrical tissue ablation in the bile duct. Once the wire electrode arrived at the site, electrical voltage was applied to remove the tissue blockage through a process known as "electrocauterization." The wire electrode used in the experiment measured 25 cm in length and weighed three and a half times more than an individual TrainBot unit. Following the procedure, another TrainBot convoy could deliver a catheter for fluid drainage or administer medication.

"This is where the flexible robot convoy can show its strengths," said Tian Qiu at the DKFZ who led the research team. "After the promising results with the TrainBots in the organ model, we are optimistic that we will be able to develop teams of miniature robots for further tasks in endoscopic surgery."

Related Links:
DKFZ

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Plasma Freezer
iBF125-GX
New
Documentation System For Blood Banks
HettInfo II

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.