We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Bedside Scanning Device to Enable Slide-Free Pathology for Complete Surgical Tumor Removal

By HospiMedica International staff writers
Posted on 15 Aug 2024
Print article
Project leads J. Quincy Brown (left), associate professor of biomedical engineering, and Brian Summa, associate professor of computer science, test a prototype of a new imaging system (Photo courtesy of Tulane University)
Project leads J. Quincy Brown (left), associate professor of biomedical engineering, and Brian Summa, associate professor of computer science, test a prototype of a new imaging system (Photo courtesy of Tulane University)

Annually, millions are diagnosed with cancer, with surgical removal being the first treatment option for solid tumors. However, distinguishing tumor margins from healthy tissue during surgery poses a challenge due to insufficient visual contrast. Current practices involve pathologists examining thin sections of tumors under microscopes to examine the borders between cancer and healthy tissue, but this method is time-consuming and only inspects a small portion of the tumor. Consequently, it can take several days or even weeks to confirm whether the entire tumor has been successfully removed. Researchers are now developing a sophisticated imaging system designed to instantly scan tumors during surgical procedures and ascertain within minutes if any cancerous tissue remains after the excision.

Researchers at Tulane University (New Orleans, LA, USA) are leading a project called MAGIC-SCAN (Machine-learning Assisted Gigantic Image Cancer margin SCANner) which aims to become one of the fastest high-resolution tissue scanners in the world. This system would be capable of identifying residual cancer cells on the surface of excised organs in a matter of minutes. The scanner would be trained on a vast database of clinical scans to accurately identify cancer cells at a cellular level, producing a detailed 3D map of the tumor’s surface. The new technology combines advances in microscopy, automation, computing, and machine learning, utilizing optical-sectioning super-resolution structured illumination microscopy to achieve twice the resolution of conventional microscopes.

This cutting-edge imaging tool promises to transform cancer surgery by enabling doctors, while the patient is still under anesthesia, to verify the complete removal of cancer, potentially eliminating the need for additional surgeries. The Tulane research team has been developing this technology with a focus on prostate and colorectal cancers—two of the most challenging tumors to excise—reducing detection time to approximately 45 minutes. They have built a prototype of this groundbreaking system and are now leading efforts to address the remaining technical, computing, and engineering challenges to actualize this device within five years. Efforts are underway to enhance imaging resolution quality and develop the necessary cyberinfrastructure to manage extensive data sets required for training the machine-learning models. Furthermore, the team plans to conduct clinical validation of the device and develop versions compliant with FDA regulations.

“Currently, it can take days to weeks before a surgeon knows whether all the tumor has been removed, and our goal is to get that down to 10 minutes, while the patient is still on the table,” said J. Quincy Brown, PhD, associate professor of biomedical engineering in the Tulane School of Science and Engineering and lead researcher on the project. “If successful, our work would transform cancer surgery as we know it.”

Related Links:
Tulane University

Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Phototherapy Eye Protector
EyeMax2
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.