We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AI Enhances Early-Stage Detection of Esophageal Cancers During Routine Endoscopy

By HospiMedica International staff writers
Posted on 02 Aug 2024
Print article
Image: A deep learning system can assist in early-stage detection of esophageal cancers during routine endoscopy (Photo courtesy of Adobe Stock)
Image: A deep learning system can assist in early-stage detection of esophageal cancers during routine endoscopy (Photo courtesy of Adobe Stock)

Endoscopy serves as the principal technique for identifying asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Detecting early-stage esophageal cancers, which respond better to treatment, remains a significant challenge due to their subtle presentation. Enhancing the detection rates of such early stages is crucial. Now, a new study has demonstrated that integrating a deep learning system into routine endoscopy can significantly improve the detection of early-stage esophageal cancers.

The large-scale randomized controlled trial (RCT), conducted by researchers at Taizhou Hospital (Zhejiang, China), evaluated the effectiveness of a deep learning–based system named ENDOANGEL-ELD for detecting esophageal cancer. The results published in Science Translational Medicine reveal that this AI system nearly doubled the detection capability of clinicians in identifying high-risk esophageal lesions, including both cancerous and precancerous conditions, compared to traditional unassisted endoscopy.

In the trial, 3,117 patients were randomly assigned to undergo either AI-assisted or standard endoscopy. The findings indicated a significant improvement in detection rates of high-risk esophageal lesions when using the AI system, with detection rates of 1.8% compared to 0.9% in the unassisted group. The ENDOANGEL-ELD system exhibited high sensitivity (89.7%), specificity (98.5%), and overall accuracy (98.2%), and was noted for its safety with no adverse events reported. These results underscore the potential of AI to enhance the early diagnosis and treatment of esophageal cancer, which could improve patient outcomes significantly.

Related Links:
Taizhou Hospital

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Low Profile Plate System
REVOLVE
New
BiPAP Machine
Breath Smart Series

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.