We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Portable Imaging System Helps Surgeons Distinguish Between Healthy and Cancerous Tissue During Tumor Removal

By HospiMedica International staff writers
Posted on 19 Oct 2022
Print article
Image: The portable system determines the depth of tumor cells in the body (Photo courtesy of WUSTL)
Image: The portable system determines the depth of tumor cells in the body (Photo courtesy of WUSTL)

Research has shown that surgical treatments for cancer tend to be most successful if surgeons remove not only the tumor but also a healthy layer of tissue completely surrounding it. However, this can be difficult because it’s hard to pinpoint the margins between where the tumor ends and healthy tissue begins. In addition, the optimal thickness of the healthy layer depends on the tumor type and location. Researchers have now developed a low-cost, simple imaging system that uses tumor-targeting fluorescent molecules to determine the depth of tumor cells in the body. The portable system could eventually help surgeons distinguish between healthy and cancerous tissue with higher precision when removing a tumor.

Doctors can use fluorescent molecules during tumor resection to make cancer cells light up so that the surgeon can see if any cancerous tissue remains. However, the equipment necessary for this technique isn’t widely accessible and typically doesn’t provide quantitative information about how deep within the tissue the cancer cells reside. The portable and easy-to-use system developed by researchers at Washington University in St. Louis (WUSTL, St. Louis, MI, USA) would provide surgeons with access to depth information to help them remove a full healthy layer of tissue around the tumor, which has been shown to provide the best possible outcomes for patients.

The research team developed the new instrument based on applying one single fluorescent dye during tumor resection which then can be excited by two different near-infrared (NIR)-wavelengths that penetrate different depths in the tissue. The emitted NIR-fluorescence can be imaged through tissue, allowing cancer cells to be detected 1 to 2 centimeters below the surface. Dual wavelength excitation fluorescence uses the fact that different colors, or wavelengths, of light will travel different distances within tissue. By illuminating tumor-targeting fluorescent molecules with different light wavelengths and comparing their responses, it’s possible to predict how deep the tumor-targeted agents are located within the tissue.

The new fluorescence imaging system uses 730-nm and 780-nm LEDs to provide the two wavelengths of excitation light and a monochrome CMOS camera to detect the resulting fluorescence. An 850-nm LED was also incorporated to create a brightfield image that allows the fluorescence images to be correlated with the real-world view of the tissue. The researchers decided to use an experimental agent called LS301, which can be administered during tumor resection, as the cancer-targeting infrared probe because its broad excitation spectrum prevents the need to use more than one fluorophore, which would have made the clinical application more complex. LS301 is currently undergoing clinical trials in breast cancer patients.

After testing the system on layered synthetic materials and slices of chicken, the researchers assessed its ability to predict the depth of a tumor from breast tumors grown in mice. This was done by injecting the mice with LS301 and then imaging them using the system. Capturing the necessary images took 5 minutes. Calculations based on these images correlated well with the true depth of the tumor, showing an average error of only 0.34 mm, which is likely acceptable for clinical use. The researchers are now working to make the system even more useful for surgical guidance by speeding up data processing and adding additional automation to the system so that it can scan the entire tissue surface.

“The few commercial systems that do provide quantitative depth information are large and expensive, limiting use outside of large medical centers,” said research team leader Christine M. O’Brien from Samuel Achilefu’s Lab at Washington University School of Medicine in St. Louis. “Our group built upon prior work in this field to develop a low-cost, simple system that can quickly determine the depth of tumor cells using near-infrared (NIR) fluorescent probes.”

“Systems like this could be used in the future to improve surgical outcomes of patients undergoing tumor removal,” added O’Brien. “It would also prevent the need to wait for pathology results before confirming whether cancer cells are still present after tumor removal.”

Related Links:
WUSTL

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Fetal and Maternal Monitor
F9 Series
New
Mobile Power Procedure Chair
LeMans P360

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.