We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Nonlinear Ultrasound Could Give Medical Needles New Enhanced Functions in Minimally Invasive Surgeries

By HospiMedica International staff writers
Posted on 07 Oct 2022
Print article
Image: A study looks at how nonlinear ultrasound can be used to create vibrations in an ordinary medical needle (Photo courtesy of Aalto University)
Image: A study looks at how nonlinear ultrasound can be used to create vibrations in an ordinary medical needle (Photo courtesy of Aalto University)

The diagnosis of diseases like cancer almost always needs a biopsy – a procedure where a clinician removes a piece of suspect tissue from the body to examine it, typically under a microscope. Many areas of diagnostic medicine, especially cancer management, have seen huge advances in technology, with genetic sequencing, molecular biology and artificial intelligence all rapidly increasing doctors' ability to work out what’s wrong with a patient. However the technology of medical needles hasn’t changed dramatically in 150 years, and – in the context of cancer management – needles are struggling to provide adequate tissue samples for new diagnostic techniques. Previously, researchers had shown that modifying the biopsy needle to vibrate rapidly at 30,000 times per second not only provides sufficient data for 21st century diagnostic needs, but is also potentially less painful and less traumatic for patients. Now, new research explores if nonlinear ultrasound can be used to overcome the limitations of currently used medical needles, such as the pain experienced by patients, inaccuracy and variable quality of needle biopsy samples.

Using computer models and experimental studies, the researchers at Aalto University (Espoo, Finland) were able to show that oscillations of the needle caused a number of non-linear acoustic phenomena. These include cavitation, the sudden expansion and collapse of air bubbles; the formation of acoustically driven fluid flows; acoustic radiation force, the force exerted by an ultrasonic wave on an object; and the formation of micro-droplets.

“In this study, we used needles to generate transverse-like motions at 30 kHz. This allows the acoustic energy to be amplified towards the needle tip, exactly where the effect is needed. This localized ultrasound energy can be used in a variety of applications, such as improving the quality of needle biopsy samples,” said Professor Heikki Nieminen, who is leading the project. “The investigated approach has the potential to give conventional medical needles new enhanced functions in medical applications not only in needle biopsy but also in drug or gene delivery, cell stimulation, and minimally invasive surgical procedures.”

Related Links:
Aalto University 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Monitor Cart
Tryten S5
New
Plasma Freezer
iBF125-GX

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.