We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI IDs Cardiac Arrest Patients Who Can Benefit From Implantable Cardioverter Defibrillator

By HospiMedica International staff writers
Posted on 01 Apr 2022
Print article
Image: A new study has the potential to enhance prevention of sudden cardiac arrest (Photo courtesy of Cedars-Sinai)
Image: A new study has the potential to enhance prevention of sudden cardiac arrest (Photo courtesy of Cedars-Sinai)

Out-of-hospital sudden cardiac arrest claims at least 300,000 U.S. lives annually. For those affected, 90% will die within 10 minutes of cardiac arrest. For this largely fatal condition, prevention would have a profound impact. The biggest challenge, however, lies in distinguishing between those who stand to benefit the most from an implantable cardioverter defibrillator - and those who would not benefit from the electric jolt. Now, a clinical algorithm, for the first time, distinguishes between treatable sudden cardiac arrest and untreatable forms of the condition.

The findings by researchers in the Smidt Heart Institute at Cedars-Sinai (Los Angeles, CA, USA) have the potential to enhance prevention of sudden cardiac arrest -unexpected loss of heart function - based on key risk factors identified in this study. The new research provides a clinical risk assessment algorithm that can better identify patients at highest risk of treatable sudden cardiac arrest - and thus, a better understanding of those patients who would benefit from a defibrillator.

The risk assessment algorithm consists of 13 clinical, electrocardiogram, and echocardiographic variables that could put a patient at higher risk of treatable sudden cardiac arrest. The risk factors include diabetes, myocardial infarction, atrial fibrillation, stroke, heart failure, chronic obstructive pulmonary disease, seizure disorders, syncope - a temporary loss of consciousness caused by a fall in blood pressure - and four separate indicators found with an electrocardiogram test, including heart rate.

“This first-of-its-kind algorithm has the potential to improve the way we currently predict sudden cardiac arrest,” said Eduardo Marbán, MD, PhD, executive director of the Smidt Heart Institute and the Mark S. Siegel Family Foundation Distinguished Professor. “If validated in clinical trials, we will be able to better identify high-risk patients and therefore, save lives.”

Related Links:
Cedars-Sinai 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Plasma Freezer
iBF125-GX
New
Blanket Warming Cabinet
EC250

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.