We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI Model Trained on Pre-Treatment Laparoscopic Surgical Videos Predicts Treatment Outcomes in Ovarian Cancer

By HospiMedica International staff writers
Posted on 22 Mar 2022
Print article
Image: AI can predict treatment outcomes in ovarian cancer during pre-surgical assessment (Photo courtesy of Pexels)
Image: AI can predict treatment outcomes in ovarian cancer during pre-surgical assessment (Photo courtesy of Pexels)

Artificial intelligence (AI) can predict treatment outcomes in ovarian cancer at the time of pre-surgical assessment with a high degree of accuracy, according to results of a new pilot study.

The study by researchers at the University of Texas MD Anderson Cancer Center (Houston, TX, USA) trained an AI model to use still-frame images from pre-treatment laparoscopic surgical videos to predict outcomes in two predefined populations of patients with high-grade serous ovarian cancer (HGSOC): those with excellent response (ER) to standard treatment and those with poor response (PR) to standard therapy.

The study examined videos from 113 HGSOC patients, 75 (66%) of whom had a durable response to the therapy (ER). A total of 435 still-frame images from four anatomical locations – diaphragm, omentum, peritoneum and pelvis – were used to develop the AI model to detect distinct morphological patterns of disease in the patients, correlate those patterns with outcomes, and discriminate between the two patient populations (ER or PR). The images were divided into three sets: 70% for training, 10% for validation and 20% for testing. The model effectively predicted outcomes with an overall accuracy 93%. It successfully identified all patients with ER but misclassified about one-third of patients with PR as ER patients, possibly because of the smaller number images available for these patients in the study.

“This pilot study is an exciting frontier in surgical innovation that shows how we can use machine learning to enhance our clinical approach to treating patients with gynecologic cancers,” said Deanna Glassman, MD, The University of Texas MD Anderson Cancer Center, who co-led the study. “A major implication of our study is that the AI model could identify patients who are likely to have a poor response to traditional therapies, enabling clinicians to alter surgical plans and goals, and providing opportunities for tailoring therapeutic strategies in those patients.”

“The concept of using an AI model trained on laparoscopic images requires additional validation studies, but in the future it could be extended to other gynecologic cancers to identify patterns of disease, predict treatment outcomes, and distinguish between viable and necrosed malignant tissue at the time of interval debulking surgery (IDS),” Glassman said.

Related Links:
University of Texas MD Anderson Cancer Center 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.