We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Personalized 3D Trials Facilitate Spinal Fusion Procedures

By HospiMedica International staff writers
Posted on 30 Sep 2020
Print article
Image: 3D OLIF Trials feature height and length measurements visible only under fluoroscopy (Photo courtesy of CoreLink)
Image: 3D OLIF Trials feature height and length measurements visible only under fluoroscopy (Photo courtesy of CoreLink)
A new oblique lumbar interbody fusion (OLIF) instrument set uses 3D printed trials for safer, more accurate interbody sizing.

The CoreLink (St. Louis, MO, USA) OLIF Instrument Set is a comprehensive solution with nearly 100 instruments and 40 tools made specifically for OLIF procedures, which enable reproducible lateral access to the L5-S1 disc space, eliminating the need to reposition the patient during surgery. Disc preparation and implantation instruments are oblique-angled to provide easy access to the disc space, limiting the need to perform any implant rotation or other instrument maneuvers that may excessively strain surrounding anatomical structures.

The OLIF instrument set includes patent-pending 3D printed trials visible only under fluoroscopy to facilitate interbody sizing, implant selection, and operative workflow. Additional features include a range of 18mm and 22mm Cobbs curettes; distractors, osteotomes, and rasps; rapid access to the inter-vertebral disc space via a versatile retractor system; and multiple biocompatible interbody materials, including proprietary Corelink CL5 polyetheretherketone (PEEK) and F3D Titanium alloy lateral interbody cages.

“The addition of OLIF instrumentation bolsters our minimally invasive spine surgery options and builds on our robust lateral access, fusion, and stabilization platforms. We've taken the approach a step further with 3D printed surgical steel instrumentation, our latest foray into additive manufacturing technology,” said Jay Bartling, CEO of CoreLink. “This allows us to build lightweight instruments with features that would not be possible using traditional subtractive methods. We challenged ourselves to a strong year of product development and our team has been consistently delivering.”

Traditional posterior fusion techniques require the dissection and retraction of back muscles, bones, vessels, ligaments, and nerves; whereas the traditional anterior approaches through the abdominal musculature risk injury to major vascular structures such as the aorta and iliac vessels, as well as the very delicate genitourinary structures. The lateral approach addresses spinal pathology utilizing dynamic real-time nerve localizing and monitoring techniques, thus minimizing surrounding tissue trauma and maximizing safety and efficacy.

Related Links:
CoreLink

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
LED Examination Lamp
Clarity 50 LED
New
In-Bed Scale
IBFL500

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.