We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Innovative Biodegradable Alloy Advances Bone Implants

By HospiMedica International staff writers
Posted on 16 Jul 2020
Print article
Image: Dr. Alexander Komissarov testing the magnesium, gallium, and zinc alloy (Photo courtesy of NUST-MISiS)
Image: Dr. Alexander Komissarov testing the magnesium, gallium, and zinc alloy (Photo courtesy of NUST-MISiS)
A new bioresorbable alloy based on magnesium, gallium, and zinc can be used to make temporary implants for the treatment of fractures, osteoporosis, and myeloma.

Developed at the Russian National University of Science and Technology (NUST-MISiS; Moscow, Russia), Monash University (Melbourne, Australia), and other institutions, the new bioresorbable alloy takes advantage of the efficacy of gallium in inhibiting bone resorption, osteoporosis, Paget's disease, and other illnesses. The alloy is intended for use in the manufacture of temporary implants for the treatment of fractures, and the restoration of surgically removed bone due to pathologies.

A severe plastic deformation technique of equal channel angular pressing (ECAP) provides the alloy with favorable mechanical properties and a low rate of degradation and biocorrosion, in contrast to alloys that are based largely on magnesium. As result, it does not undergo a rapid decomposition process in the environment of the human body, and retains its supporting functions throughout the healing process. The study was published on May 12, 2020, in the Journal of Magnesium and Alloys.

“Gallium is known as an ‘inhibitor’ of bone resorption, it is effective in treating disorders associated with accelerated bone loss,” said Alexander Komissarov, PhD, head of the Hybrid Nanostructured Materials Laboratory at NUST MISIS. “Gallium is also involved in biochemical regeneration processes, increasing the thickness, strength, and mineral content of the bone. Finally, it has an antibacterial effect, which is especially important in implantology.”

Gallium is predominantly used in electronics. And although gallium it has no natural function in biology, gallium ions interact with processes in the body in a manner similar to iron (Fe). The body therefore handles Gallium as though it were Fe3+, and the ion is bound in areas of inflammation, such as infection, and in areas of rapid cell division. It is also used in nuclear medicine imaging radiopharmaceutical agents (Gallium scan), such as the radioactive isotope 67Ga.

Related Links:
Russian National University of Science and Technology
Monash University


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
X-ray Diagnostic System
FDX Visionary-A
New
Cannulating Sphincterotome
TRUEtome

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.