We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Portable Device Measures Blood Coagulation Ability

By HospiMedica International staff writers
Posted on 07 Jul 2020
Print article
Image: Laser speckle rheology can detect blood viscosity on-site (Photo courtesy of Nadkarni lab/ MGH)
Image: Laser speckle rheology can detect blood viscosity on-site (Photo courtesy of Nadkarni lab/ MGH)
A novel optical device allows rapid, comprehensive whole blood coagulation profiling in patients at elevated bleeding risk.

Developed at Massachusetts General Hospital (MGH; Boston, USA) and the Wellman Center for Photomedicine (Boston, MA, USA), the iCoagLab is a laser-based rheology device that illuminates a drop of blood placed into a disposable cartridge. The recalcified and kaolin-activated blood samples are tested using time-varying intensity fluctuation of laser speckle patterns in order to quantify the clot viscoelastic modulus during coagulation. The results are generated within minutes at the patient's bedside.

Coagulation parameters derived from clot viscoelasticity include reaction time, clot progression time, clot progression rate, and maximum clot strength. In a study involving whole blood samples from 270 patients undergoing conventional coagulation testing and the iCoagLab device, a good correlation was found between the iCoagLab and conventional thromboelastography (TEG) derived parameters, while the diagnostic specificity of iCoagLab (77%) was significantly higher than TEG (69%). The study was published in the June 2020 issue of Thrombosis and Haemostasis.

“Clinicians in the operating room or the ICU often walk a thin line to maintain the delicate balance between bleeding and coagulation,” said senior author Professor Seemantini Nadkarni, PhD, of the MGH Wellman Center for Photomedicine. “The iCoagLab innovation will likely advance clinical capability to rapidly identify patients with defective clotting at the point-of-care, assess risk of hemorrhage, and tailor treatments based on individual coagulation deficits to help prevent life-threatening bleeding in patients.”

“By rapidly and comprehensively permitting blood coagulation profiling the iCoagLab innovation is likely to advance the capability to identify patients with elevated risk for bleeding, with the ultimate goal of preventing life-threatening hemorrhage, “concluded lead author Markandey Tripathi, PhD, of the Wellman Center for Photomedicine. “Timely and accurate identification of impaired coagulation at the point-of-care can proactively identify bleeding risk and guide resuscitation, resulting in improved outcomes for patients.”

Blood viscosity is determined by plasma viscosity, hematocrit, and the mechanical properties of red blood cells (RBCs). As a result, blood behaves as a non-Newtonian fluid, and its viscosity varies with shear rate. Blood becomes less viscous at high shear rates, and increases when shear rate goes down and with RBC aggregability. The viscoelasticity of human blood is primarily due to the elastic energy that is stored in the deformation of RBCs.

Related Links:
Massachusetts General Hospital
Wellman Center for Photomedicine


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Digital Radiographic System
OMNERA 300M
New
Anterior Cervical Plate System
XTEND

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.