We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Yarn Made from Human Tissue Helps Repair Wounds

By HospiMedica International staff writers
Posted on 27 Feb 2020
Print article
Image: A spool of yarn made from extracellular matrix sheets (Photo courtesy of Nicolas L`Heureux/ INSERM)
Image: A spool of yarn made from extracellular matrix sheets (Photo courtesy of Nicolas L`Heureux/ INSERM)
Yarn grown from human skin cells can be knitted, crocheted, and sewed to create pouches, valves, and tubes, and even perforated membranes, according to a new study.

Developed by researchers at the French National Institute of Health and Medical Research (INSERM; Bordeaux, France), Fountain Therapeutics (Culver City, CA, USA), and other institutions, the “human textile” is made of cell-assembled extracellular matrix (CAM) sheets extracted from cultured adult, human fibroblasts. The biological, yet robust, material can be spun into a mass-produced yarn with a range of physical and mechanical properties for use in a range of clinical applications.

In the study, the researchers showed that the material can be used as a simple suture to close a wound, or even nitted into fully biological, human, implantable tissue-engineered vascular grafts (TEVGs) with mechanical burst pressure, suture retention strength, and transmural permeability that surpass clinical requirements. The yarn was also used to stitch up a rat’s wound, with the wound healing fully over the course of two weeks. IN addition, the researchers created a skin graft, using a custom-designed loom, to successfully stop a sheep’s artery from leaking. The study was published on January 26, 2020, in Acta Biomaterialia.

“By combining this truly ‘bio’ material with a textile-based assembly, this original tissue engineering approach is highly versatile and can produce a variety of strong human textiles that can be readily integrated in the body,” concluded senior author Nicolas L'Heureux, PhD, of INSERM, and colleagues. “This novel strategy holds the promise of a next generation of medical textiles that will be mechanically strong without any foreign scaffolding, and will have the ability to truly integrate into the host's body.”

The ECM is a collection of extracellular molecules that provides structural and biochemical support to the surrounding cells. It includes the interstitial matrix, composed of polysaccharide gels and fibrous proteins, and the basement membrane, which are sheet-like depositions on which various epithelial cells rest. Each type of connective tissue in animals has a different ECM; collagen fibers and bone mineral comprise the ECM of bone tissue; reticular fibers and ground substance comprise the ECM of loose connective tissue; and blood plasma is the ECM of blood.

Related Links:
French National Institute of Health and Medical Research
Fountain Therapeutics


Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Forceps
BiClamp LAP

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.